scholarly journals Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda

2020 ◽  
Vol 26 (10) ◽  
pp. 1602-1608 ◽  
Author(s):  
Aline Uwimana ◽  
Eric Legrand ◽  
Barbara H. Stokes ◽  
Jean-Louis Mangala Ndikumana ◽  
Marian Warsame ◽  
...  

Abstract Artemisinin resistance (delayed P. falciparum clearance following artemisinin-based combination therapy), is widespread across Southeast Asia but to date has not been reported in Africa1–4. Here we genotyped the P. falciparum K13 (Pfkelch13) propeller domain, mutations in which can mediate artemisinin resistance5,6, in pretreatment samples collected from recent dihydroarteminisin-piperaquine and artemether-lumefantrine efficacy trials in Rwanda7. While cure rates were >95% in both treatment arms, the Pfkelch13 R561H mutation was identified in 19 of 257 (7.4%) patients at Masaka. Phylogenetic analysis revealed the expansion of an indigenous R561H lineage. Gene editing confirmed that this mutation can drive artemisinin resistance in vitro. This study provides evidence for the de novo emergence of Pfkelch13-mediated artemisinin resistance in Rwanda, potentially compromising the continued success of antimalarial chemotherapy in Africa.

2020 ◽  
Author(s):  
Nelson V. Simwela ◽  
Barbara H. Stokes ◽  
Dana Aghabi ◽  
Matt Bogyo ◽  
David A. Fidock ◽  
...  

ABSTRACTThe recent emergence of Plasmodium falciparum (PF) parasite resistance to the first line antimalarial drug artemisinin is of particular concern. Artemisinin resistance is primarily driven by mutations in the PF K13 protein, which enhance survival of early ring stage parasites treated with the artemisinin active metabolite dihydroartemisinin in vitro and associate with delayed parasite clearance in vivo. However, association of K13 mutations with in vivo artemisinin resistance has been problematic due to the absence of a tractable model. Herein, we have employed CRISPR/Cas9 genome editing to engineer selected orthologous PF K13 mutations into the K13 gene of an artemisinin-sensitive, P. berghei (PB) rodent model of malaria. Introduction of the orthologous PF K13 F446I, M476I, Y493H and R539T mutations into PB K13 produced gene-edited parasites with reduced susceptibility to dihydroartemisinin in the standard 24-hour in vitro assay and increased survival in an adapted in vitro ring-stage survival assay. Mutant PB K13 parasites also displayed delayed clearance in vivo upon treatment with artesunate and achieved faster recrudescence upon treatment with artemisinin. Orthologous C580Y and I543T mutations could not be introduced into PB while the equivalent of the M476I and R539T mutations resulted in significant growth defects. Furthermore, a Plasmodium-selective proteasome inhibitor strongly synergized dihydroartemisinin action in these PB K13 mutant lines, providing further evidence that the proteasome can be targeted to overcome ART resistance. Taken together, our work provides clear experimental evidence for the involvement of K13 polymorphisms in mediating susceptibility to artemisinins in vitro, and most importantly under in vivo conditions.IMPORTANCERecent successes in malaria control have been seriously threatened by the emergence of Plasmodium falciparum parasite resistance to the frontline artemisinin drugs in Southeast Asia. P. falciparum artemisinin resistance is associated with mutations in the parasite K13 protein, which associates with a delay in the time required to clear the parasites upon treatment with the drug. Gene editing technologies have been used to validate the role of several candidate K13 mutations in mediating P. falciparum artemisinin resistance in vitro under laboratory conditions. Nonetheless, the causal role of these mutations under in vivo conditions has been a matter of debate. Here, we have used CRISPR/Cas9 gene editing to introduce K13 mutations associated with artemisinin resistance into the related rodent-infecting parasite, P. berghei. Phenotyping of these P. berghei K13 mutant parasites provides evidence of their role in mediating artemisinin resistance in vivo, which supports in vitro artemisinin resistance observations. However, we were unable to introduce some of the P. falciparum K13 mutations (C580Y, I543T) into the corresponding amino acid residues, while other introduced mutations (M476I, R539T equivalents) carried a pronounced fitness cost. Our study provides evidence of a clear causal role of K13 mutations in modulating susceptibility to artemisinins in vitro and in vivo using the well-characterized P. berghei model. We also show that inhibition of the P. berghei proteasome offsets parasite resistance to artemisinins in these mutant lines.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Luana C Mathieu ◽  
Horace Cox ◽  
Angela M Early ◽  
Sachel Mok ◽  
Yassamine Lazrek ◽  
...  

Antimalarial drug resistance has historically arisen through convergent de novo mutations in Plasmodium falciparum parasite populations in Southeast Asia and South America. For the past decade in Southeast Asia, artemisinins, the core component of first-line antimalarial therapies, have experienced delayed parasite clearance associated with several pfk13 mutations, primarily C580Y. We report that mutant pfk13 has emerged independently in Guyana, with genome analysis indicating an evolutionary origin distinct from Southeast Asia. Pfk13 C580Y parasites were observed in 1.6% (14/854) of samples collected in Guyana in 2016–2017. Introducing pfk13 C580Y or R539T mutations by gene editing into local parasites conferred high levels of in vitro artemisinin resistance. In vitro growth competition assays revealed a fitness cost associated with these pfk13 variants, potentially explaining why these resistance alleles have not increased in frequency more quickly in South America. These data place local malaria control efforts at risk in the Guiana Shield.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Matilde Riloha Rivas ◽  
Marian Warsame ◽  
Ramona Mbá Andeme ◽  
Salomón Nsue Esidang ◽  
Policarpo Ricardo Ncogo ◽  
...  

Abstract Background Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the currently recommended first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Equatorial Guinea. This study was designed to evaluate the efficacy of these artemisinin-based combinations and detect mutations in P. falciparum kelch13-propeller domain gene (Pfkelch13). Methods A single-arm prospective study evaluating the efficacy of ASAQ and AL at three sites: Malabo, Bata and Ebebiyin was conducted between August 2017 and July 2018. Febrile children aged six months to 10 years with confirmed uncomplicated P. falciparum infection and other inclusion criteria were sequentially enrolled first in ASAQ and then in AL at each site, and followed up for 28 days. Clinical and parasitological parameters were assessed. The primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples on day-0 were analysed for mutations in Pfkelch13 gene. Results A total 264 and 226 patients were enrolled in the ASAQ and AL treatment groups, respectively. Based on per-protocol analysis, PCR-adjusted cure rates of 98.6% to 100% and 92.4% to 100% were observed in patients treated with ASAQ and AL, respectively. All study children in both treatment groups were free of parasitaemia by day-3. Of the 476 samples with interpretable results, only three samples carried non-synonymous Pfkelch13 mutations (E433D and A578S), and none of them is the known markers associated with artemisinin resistance. Conclusion The study confirmed high efficacy of ASAQ and AL for the treatment of uncomplicated falciparum infections as well as the absence of delayed parasite clearance and Pfkelch13 mutations associated with artemisinin resistance. Continued monitoring of the efficacy of these artemisinin-based combinations, at least every two years, along with molecular markers associated with artemisinin and partner drug resistance is imperative to inform national malaria treatment policy and detect resistant parasites early. Trial registration ACTRN12617000456358, Registered 28 March 2017; http://www.anzctr.org.au/trial/MyTrial.aspx


2004 ◽  
Vol 384 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Sundaramurthy VARADHARAJAN ◽  
B. K. Chandrashekar SAGAR ◽  
Pundi N. RANGARAJAN ◽  
Govindarajan PADMANABAN

Our previous studies have demonstrated de novo haem biosynthesis in the malarial parasite (Plasmodium falciparum and P. berghei). It has also been shown that the first enzyme of the pathway is the parasite genome-coded ALA (δ-aminolaevulinate) synthase localized in the parasite mitochondrion, whereas the second enzyme, ALAD (ALA dehydratase), is accounted for by two species: one species imported from the host red blood cell into the parasite cytosol and another parasite genome-coded species in the apicoplast. In the present study, specific antibodies have been raised to PfFC (parasite genome-coded ferrochelatase), the terminal enzyme of the haem-biosynthetic pathway, using recombinant truncated protein. With the use of these antibodies as well as those against the hFC (host red cell ferrochelatase) and other marker proteins, immunofluorescence studies were performed. The results reveal that P. falciparum in culture manifests a broad distribution of hFC and a localized distribution of PfFC in the parasite. However, PfFC is not localized to the parasite mitochondrion. Immunoelectron-microscopy studies reveal that PfFC is indeed localized to the apicoplast, whereas hFC is distributed in the parasite cytoplasm. These results on the localization of PfFC are unexpected and are at variance with theoretical predictions based on leader sequence analysis. Biochemical studies using the parasite cytosolic and organellar fractions reveal that the cytosol containing hFC accounts for 80% of FC enzymic activity, whereas the organellar fraction containing PfFC accounts for the remaining 20%. Interestingly, both the isolated cytosolic and organellar fractions are capable of independent haem synthesis in vitro from [4-14C]ALA, with the cytosol being three times more efficient compared with the organellar fraction. With [2-14C]glycine, most of the haem is synthesized in the organellar fraction. Thus haem is synthesized in two independent compartments: in the cytosol, using the imported host enzymes, and in the organellar fractions, using the parasite genome-coded enzymes.


Author(s):  
Lucie Paloque ◽  
Romain Coppée ◽  
Barbara H. Stokes ◽  
Nina F. Gnädig ◽  
Karamoko Niaré ◽  
...  

Partial artemisinin resistance, defined in patients as a delayed parasite clearance following artemisinin-based treatment, is conferred by non-synonymous mutations in the Kelch beta-propeller domain of the Plasmodium falciparum k13 ( pfk13 ) gene. Here, we carried out in vitro selection over a one-year period on a West African P. falciparum strain isolated from Kolle (Mali) under a dose-escalating artemisinin regimen. After 18 cycles of sequential drug pressure, the selected parasites exhibited enhanced survival to dihydroartemisinin in the ring-stage survival assay (RSA 0-3h = 9.2%). Sanger and whole-genome sequence analyses identified the PfK13 P413A mutation, localized in the BTB/POZ domain, upstream of the propeller domain. This mutation was sufficient to confer in vitro artemisinin resistance when introduced into the PfK13 coding sequence of the parasite strain Dd2 by CRISPR/Cas9 gene editing. These results together with structural studies of the protein demonstrate that the propeller domain is not the sole in vitro mediator of PfK13-mediated artemisinin resistance, and highlight the importance of monitoring for mutations throughout PfK13.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1273
Author(s):  
Océane Delandre ◽  
Mathieu Gendrot ◽  
Isabelle Fonta ◽  
Joel Mosnier ◽  
Nicolas Benoit ◽  
...  

Background: Artemisinin-based combination therapy (ACT) was recommended to treat uncomplicated falciparum malaria. Unlike the situation in Asia where resistance to ACT has been reported, artemisinin resistance has not yet emerged in Africa. However, some rare failures with ACT or patients continuing to be parasitaemic on day 3 after ACT treatment have been reported in Africa or in travellers returning from Africa. Three mutations (G50E, R100K, and E107V) in the pfcoronin gene could be responsible for artemisinin resistance in Africa. Methods: The aims of this study were first to determine the prevalence of mutations in the pfcoronin gene in African P. falciparum isolates by Sanger sequencing, by targeting the 874 samples collected from patients hospitalised in France after returning from endemic areas in Africa between 2018 and 2019, and secondly to evaluate their association with in vitro reduced susceptibility to standard quinoline antimalarial drugs, including chloroquine, quinine, mefloquine, desethylamodiaquine, lumefantrine, piperaquine, and pyronaridine. Results: The three mutations in the pfcoronin gene (50E, 100K, and 107V) were not detected in the 874 P. falciparum isolates. Current data show that another polymorphism (P76S) is present in many countries of West Africa (mean prevalence of 20.7%) and Central Africa (11.9%) and, rarely, in East Africa (4.2%). This mutation does not appear to be predictive of in vitro reduced susceptibility to quinolines, including artemisinin derivative partners in ACT such as amodiaquine, lumefantrine, piperaquine, pyronaridine, and mefloquine. Another mutation (V62M) was identified at low prevalence (overall prevalence of 1%). Conclusions: The 76S mutation is present in many African countries with a prevalence above 10%. It is reassuring that this mutation does not confer in vitro resistance to ACT partners.


2014 ◽  
Vol 58 (12) ◽  
pp. 7049-7055 ◽  
Author(s):  
Kamala Thriemer ◽  
Nguyen Van Hong ◽  
Anna Rosanas-Urgell ◽  
Bui Quang Phuc ◽  
Do Manh Ha ◽  
...  

ABSTRACTReduced susceptibility ofPlasmodium falciparumtoward artemisinin derivatives has been reported from the Thai-Cambodian and Thai-Myanmar borders. Following increasing reports from central Vietnam of delayed parasite clearance after treatment with dihydroartemisinin-piperaquine (DHA-PPQ), the current first-line treatment, we carried out a study on the efficacy of this treatment. Between September 2012 and February 2013, we conducted a 42-dayin vivoandin vitroefficacy study in Quang Nam Province. Treatment was directly observed, and blood samples were collected twice daily until parasite clearance. In addition, genotyping, quantitative PCR (qPCR), andin vitrosensitivity testing of isolates was performed. The primary endpoints were parasite clearance rate and time. The secondary endpoints included PCR-corrected and uncorrected cure rates, qPCR clearance profiles,in vitrosensitivity results (for chloroquine, dihydroartemisinin, and piperaquine), and genotyping for mutations in the Kelch 13 propeller domain. Out of 672 screened patients, 95 were recruited and 89 available for primary endpoint analyses. The median parasite clearance time (PCT) was 61.7 h (interquartile range [IQR], 47.6 to 83.2 h), and the median parasite clearance rate had a slope half-life of 6.2 h (IQR, 4.4 to 7.5 h). The PCR-corrected efficacy rates were estimated at 100% at day 28 and 97.7% (95% confidence interval, 91.2% to 99.4%) at day 42. At day 3, theP. falciparumprevalence by qPCR was 2.5 times higher than that by microscopy. The 50% inhibitory concentrations (IC50s) of isolates with delayed clearance times (≥72 h) were significantly higher than those with normal clearance times for all three drugs. Delayed parasite clearance (PCT, ≥72 h) was significantly higher among day 0 samples carrying the 543 mutant allele (47.8%) than those carrying the wild-type allele (1.8%;P= 0.048). In central Vietnam, the efficacy of DHA-PPQ is still satisfactory, but the parasite clearance time and rate are indicative of emerging artemisinin resistance. (This study has been registered at ClinicalTrials.gov under registration no. NCT01775592.)


2013 ◽  
Vol 288 (23) ◽  
pp. 16506-16517 ◽  
Author(s):  
Sílvia Sanz ◽  
Giulia Bandini ◽  
Diego Ospina ◽  
Maria Bernabeu ◽  
Karina Mariño ◽  
...  

Carbohydrate structures play important roles in many biological processes, including cell adhesion, cell-cell communication, and host-pathogen interactions. Sugar nucleotides are activated forms of sugars used by the cell as donors for most glycosylation reactions. Using a liquid chromatography-tandem mass spectrometry-based method, we identified and quantified the pools of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, GDP-mannose, and GDP-fucose in Plasmodium falciparum intraerythrocytic life stages. We assembled these data with the in silico functional reconstruction of the parasite metabolic pathways obtained from the P. falciparum annotated genome, exposing new active biosynthetic routes crucial for further glycosylation reactions. Fucose is a sugar present in glycoconjugates often associated with recognition and adhesion events. Thus, the GDP-fucose precursor is essential in a wide variety of organisms. P. falciparum presents homologues of GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase enzymes that are active in vitro, indicating that most GDP-fucose is formed by a de novo pathway that involves the bioconversion of GDP-mannose. Homologues for enzymes involved in a fucose salvage pathway are apparently absent in the P. falciparum genome. This is in agreement with in vivo metabolic labeling experiments showing that fucose is not significantly incorporated by the parasite. Fluorescence microscopy of epitope-tagged versions of P. falciparum GDP-mannose 4,6-dehydratase and GDP-l-fucose synthase expressed in transgenic 3D7 parasites shows that these enzymes localize in the cytoplasm of P. falciparum during the intraerythrocytic developmental cycle. Although the function of fucose in the parasite is not known, the presence of GDP-fucose suggests that the metabolite may be used for further fucosylation reactions.


2021 ◽  
Author(s):  
Barbara H. Stokes ◽  
Kelly Rubiano ◽  
Satish K. Dhingra ◽  
Sachel Mok ◽  
Judith Straimer ◽  
...  

AbstractThe emergence of artemisinin (ART) resistance in Plasmodium falciparum parasites has led to increasing rates of treatment failure with first-line ART-based combination therapies (ACTs) in Southeast Asia. In this region, select mutations in K13 can result in delayed parasite clearance rates in vivo and enhanced survival in the ring-stage survival assay (RSA) in vitro. Our genotyping of 3,299 P. falciparum isolates across 11 sub-Saharan countries reveals the continuing dominance of wild-type K13 and confirms the emergence of a K13 R561H variant in Rwanda. Using gene editing, we provide definitive evidence that this mutation, along with M579I and C580Y, can confer variable degrees of in vitro ART resistance in African P. falciparum strains. C580Y and M579I were both associated with substantial fitness costs in African parasites, which may counter-select against their dissemination in high-transmission settings. We also report the impact of multiple K13 mutations, including the predominant variant C580Y, on RSA survival rates and fitness in multiple Southeast Asian strains. No change in ART susceptibility was observed upon editing point mutations in ferrodoxin or mdr2, earlier associated with ART resistance in Southeast Asia. These data point to the lack of an evident biological barrier to mutant K13 mediating ART resistance in Africa, while identifying their detrimental impact on parasite growth.


Sign in / Sign up

Export Citation Format

Share Document