scholarly journals Publisher Correction: XCR1+ type 1 conventional dendritic cells drive liver pathology in non-alcoholic steatohepatitis

2022 ◽  
Author(s):  
Aleksandra Deczkowska ◽  
Eyal David ◽  
Pierluigi Ramadori ◽  
Dominik Pfister ◽  
Michal Safran ◽  
...  
2021 ◽  
Author(s):  
Aleksandra Deczkowska ◽  
Eyal David ◽  
Pierluigi Ramadori ◽  
Dominik Pfister ◽  
Michael Safran ◽  
...  

1999 ◽  
Vol 73 (6) ◽  
pp. 4575-4581 ◽  
Author(s):  
Masahiko Makino ◽  
Satoshi Shimokubo ◽  
Shin-Ichi Wakamatsu ◽  
Shuji Izumo ◽  
Masanori Baba

ABSTRACT The development of human T-lymphotropic virus type 1 (HTLV-1)-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is closely associated with the activation of T cells which are HTLV-1 specific but may cross-react with neural antigens (Ags). Immature dendritic cells (DCs), differentiated from normal donor monocytes by using recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin-4, were pulsed with HTLV-1 in vitro. The pulsed DCs contained HTLV-1 proviral DNA and expressed HTLV-1 Gag Ag on their surface 6 days after infection. The DCs matured by lipopolysaccharides stimulated autologous CD4+ T cells and CD8+ T cells in a viral dose-dependent manner. However, the proliferation level of CD4+ T cells was five- to sixfold higher than that of CD8+ T cells. In contrast to virus-infected DCs, DCs pulsed with heat-inactivated virions activated only CD4+ T cells. To clarify the role of DCs in HAM/TSP development, monocytes from patients were cultured for 4 days in the presence of the cytokines. The expression of CD86 Ag on DCs was higher and that of CD1a Ag was more down-regulated than in DCs generated from normal monocytes. DCs from two of five patients expressed HTLV-1 Gag Ag. Furthermore, both CD4+ and CD8+ T cells from the patients were greatly stimulated by contact with autologous DCs pulsed with inactivated viral Ag as well as HTLV-1-infected DCs. These results suggest that DCs are susceptible to HTLV-1 infection and that their cognate interaction with T cells may contribute to the development of HAM/TSP.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A609-A609
Author(s):  
Sevasti Karaliota ◽  
Dimitris Stellas ◽  
Vasiliki Stravokefalou ◽  
Bethany Nagy ◽  
Cristina Bergamaschi ◽  
...  

BackgroundIL-15 is a cytokine which stimulates the proliferation and cytotoxic function of CD8+ T and NK cells. We have produced and applied the native heterodimeric IL-15 (hetIL-15) on several preclinical models, which have supported the anti-tumor activity of hetIL-15. Based on these results, hetIL-15 has advanced to clinical trials. The objectives of this study were to explore how hetIL-15 shapes the tumor microenviroment and to characterize the interactions between tumor-infiltrating lymphoid and myeloid cells.MethodsWe studied the efficacy of locoregional administration of heterodimeric IL-15 (hetIL-15) in two different orthotopic triple-negative breast cancer (TNBC) mouse models, syngeneic for C57BL/6 and Balb/c, respectively. The effects of hetIL-15 on immune cells were analyzed by flow cytometry, immunohistochemistry (IHC) and gene expression profiling. The profile of the novel infiltrated dendritic cell populations was further explored by bulk and single cell RNAseq.Results hetIL-15 resulted in tumor eradication in 40% of treated mice and reduction of metastasis. Subsequent rechallenges with the same cell line failed to generate tumor regrowth, suggesting the development of immunological memory in hetIL-15 treated mice. hetIL-15 promoted tumor accumulation of proliferating and cytotoxic CD8+ T and NK cells. Additionally, peritumoral hetIL-15 administration resulted in an increased tumor infiltration of both conventional type 1 dendritic cells (cDC1s) and of a novel DC population found only in the hetIL-15 treated animals. Phenotypic profile analysis confirmed the expression of several cDC1 specific markers, including CD103 and IRF8 on this DC population.Transcriptomics and flow analysis of intratumoral dendritic cells indicate that the new hetIL-15 induced cells reside preferentially in the tumors and are distinct from cDC1 and cDC2 populations. Both cDC1s and the novel DC population were inversely correlated with the tumor size.ConclusionsLocoregional administration of hetIL-15 results in complete eradication of EO771 and significant reduction of 4T1 primary breast cancer tumors, prolonged survival and long-lasting specific anti-tumor immunity. hetIL-15 increases the tumor infiltration of activated T and NK cells and intensifies the tumor infiltration of conventional type 1 dendritic cells (cDC1) and a new population of dendritic cells. We propose that the anti-cancer activity of hetIL-15 in primary EO771 tumors is orchestrated by the interplay of NK, CD8+T cells, cDC1 and a novel subset of DCs with a distinct phenotypic profile. These findings suggest a role for hetIL-15 in the treatment of breast cancer.Ethics ApprovalThe study was approved by the National Cancer Institute-Frederick Animal Care and Use Committee, approval number 19–324 and was conducted in accordance with the ACUC guidelines and the NIH Guide for the Care and Use of Laboratory Animals.


2001 ◽  
Vol 75 (16) ◽  
pp. 7621-7628 ◽  
Author(s):  
Julianna Lisziewicz ◽  
Dmitry I. Gabrilovich ◽  
Georg Varga ◽  
Jianqing Xu ◽  
Philip D. Greenberg ◽  
...  

ABSTRACT A novel technology combining replication- and integration-defective human immunodeficiency virus type 1 (HIV-1) vectors with genetically modified dendritic cells was developed in order to induce T-cell immunity. We introduced the vector into dendritic cells as a plasmid DNA using polyethylenimine as the gene delivery system, thereby circumventing the problem of obtaining viral vector expression in the absence of integration. Genetically modified dendritic cells (GMDC) presented viral epitopes efficiently, secreted interleukin 12, and primed both CD4+ and CD8+ HIV-specific T cells capable of producing gamma interferon and exerting potent HIV-1-specific cytotoxicity in vitro. In nonhuman primates, subcutaneously injected GMDC migrated into the draining lymph node at an unprecedentedly high rate and expressed the plasmid DNA. The animals presented a vigorous HIV-specific effector cytotoxic-T-lymphocyte (CTL) response as early as 3 weeks after a single immunization, which later developed into a memory CTL response. Interestingly, antibodies did not accompany these CTL responses, indicating that GMDC can induce a pure Th1 type of immune response. Successful induction of a broad and long-lasting HIV-specific cellular immunity is expected to control virus replication in infected individuals.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 743
Author(s):  
Ricardo Wesley Alberca ◽  
Eliane Gomes ◽  
Momtchilo Russo

Allergen-specific T helper (Th)2 cells orchestrate upon allergen challenge the development of allergic eosinophilic lung inflammation. Sensitization with alum adjuvant, a type 2 adjuvant, has been used extensively in animal models of allergic lung disease. In contrast, type 1 adjuvants like CpG-ODN, a synthetic toll-like receptor 9 agonist, inhibit the development of Th2 immunity. CpG-ODN induce type 1 and suppressive cytokines that influence Th2 cell differentiation. Here, we investigated the immune modulatory effect of CpG-ODN on allergic sensitization to OVA with alum focusing on dendritic cells (DCs) expressing the MyD88 molecule and the suppressive IL-10 cytokine. Using mice with specific cell deletion of MyD88 molecule, we showed that CpG-ODN suppressed allergic sensitization and consequent lung allergic inflammation signaling through the MyD88 pathway on dendritic cells, but not on B-cells. This inhibition was associated with an increased production of IL-10 in the bronchoalveolar lavage fluid. Sensitization to OVA with CpG-ODN of IL-10-deficient, but not wild-type mice, induced a shift towards Th1 pattern of inflammation. Employing bone marrow-derived dendritic cells (BM-DCs) pulsed with OVA for sensitizations with or without CpG-ODN, we showed that IL-10 is dispensable for the inhibition of allergic lung Th2 responses by CpG-ODN. Moreover, the lack of IL-10 on DCs was not sufficient for the CpG-ODN-induced immune-deviation towards a Th1 pattern. Accordingly, we confirmed directly the role of MyD88 pathway on DCs in the inhibition of allergic sensitization.


Sign in / Sign up

Export Citation Format

Share Document