scholarly journals Genetic tool development in marine protists: emerging model organisms for experimental cell biology

2020 ◽  
Vol 17 (5) ◽  
pp. 481-494 ◽  
Author(s):  
Drahomíra Faktorová ◽  
R. Ellen R. Nisbet ◽  
José A. Fernández Robledo ◽  
Elena Casacuberta ◽  
Lisa Sudek ◽  
...  
2020 ◽  
Vol 17 (5) ◽  
pp. 551-551
Author(s):  
Drahomíra Faktorová ◽  
R. Ellen R. Nisbet ◽  
José A. Fernández Robledo ◽  
Elena Casacuberta ◽  
Lisa Sudek ◽  
...  

2019 ◽  
Author(s):  
Drahomíra Faktorová ◽  
R. Ellen R. Nisbet ◽  
José A. Fernández Robledo ◽  
Elena Casacuberta ◽  
Lisa Sudek ◽  
...  

ABSTRACTDiverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and advancement of tools for 8 other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.


2019 ◽  
Vol 30 (11) ◽  
pp. 1245-1248 ◽  
Author(s):  
Jackie L. Collier ◽  
Joshua S. Rest

Marine protists are a polyphyletic group of organisms playing major roles in the ecology and biogeochemistry of the oceans, including performing much of Earth’s photosynthesis and driving the carbon, nitrogen, and silicon cycles. In addition, marine protists occupy key positions in the tree of life, including as the closest relatives of metazoans. Despite all the reasons to better understand them, knowledge of the cell biology of most marine protist lineages is sparse. This is beginning to change thanks to vibrant growth in the development of new model organisms. Here, we survey some recent advances in studying the cell biology of marine protists toward understanding the functional basis of their unique features, gaining new perspectives on universal eukaryotic biology, and for understanding homologous biology within metazoans and the evolution of metazoan traits.


2014 ◽  
Vol 20 (5) ◽  
pp. 1392-1403 ◽  
Author(s):  
Irina Kolotuev

AbstractTransmission electron microscopy (TEM) is an important tool for studies in cell biology, and is essential to address research questions from bacteria to animals. Recent technological innovations have advanced the entire field of TEM, yet classical techniques still prevail for most present-day studies. Indeed, the majority of cell and developmental biology studies that use TEM do not require cutting-edge methodologies, but rather fast and efficient data generation. Although access to state-of-the-art equipment is frequently problematic, standard TEM microscopes are typically available, even in modest research facilities. However, a major unmet need in standard TEM is the ability to quickly prepare and orient a sample to identify a region of interest. Here, I provide a detailed step-by-step method for a positional correlative anatomy approach to flat-embedded samples. These modifications make the TEM preparation and analytic procedures faster and more straightforward, supporting a higher sampling rate. To illustrate the modified procedures, I provide numerous examples addressing research questions in Caenorhabditis elegans and Drosophila. This method can be equally applied to address questions of cell and developmental biology in other small multicellular model organisms.


2018 ◽  
Vol 2 (4) ◽  
pp. 547-559 ◽  
Author(s):  
Yan Liao ◽  
Solenne Ithurbide ◽  
Roshali T. de Silva ◽  
Susanne Erdmann ◽  
Iain G. Duggin

The tubulin superfamily of cytoskeletal proteins is widespread in all three domains of life — Archaea, Bacteria and Eukarya. Tubulins build the microtubules of the eukaryotic cytoskeleton, whereas members of the homologous FtsZ family construct the division ring in prokaryotes and some eukaryotic organelles. Their functions are relatively poorly understood in archaea, yet these microbes contain a remarkable diversity of tubulin superfamily proteins, including FtsZ for division, a newly described major family called CetZ that is involved in archaeal cell shape control, and several other divergent families of unclear function that are implicated in a variety of cell envelope-remodelling contexts. Archaeal model organisms, particularly halophilic archaea such as Haloferax volcanii, have sufficiently developed genetic tools and we show why their large, flattened cells that are capable of controlled differentiation are also well suited to cell biological investigations by live-cell high-resolution light and electron microscopy. As most archaea only have a glycoprotein lattice S-layer, rather than a peptidoglycan cell wall like bacteria, the activity of the tubulin-like cytoskeletal proteins at the cell envelope is expected to vary significantly, and may involve direct membrane remodelling or directed synthesis or insertion of the S-layer protein subunits. Further studies of archaeal cell biology will provide fresh insight into the evolution of cells and the principles in common to their fundamental activities across the full spectrum of cellular life.


PLoS Genetics ◽  
2019 ◽  
Vol 15 (2) ◽  
pp. e1007937
Author(s):  
Jeffrey Colgren ◽  
Scott A. Nichols

2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Frank D. Müller ◽  
Dirk Schüler ◽  
Daniel Pfeiffer

ABSTRACT Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth’s magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.


2008 ◽  
Vol 180 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Wallace F. Marshall

Defects in cilia cause a broad spectrum of human diseases known collectively as the ciliopathies. Although all ciliopathies arise from defective cilia, the range of symptoms can vary significantly, and only a small subset of the possible ciliary disease symptoms may be present in any given syndrome. This complexity is puzzling until one realizes that the cilia are themselves exceedingly complex machines that perform multiple functions simultaneously, such that breaking one piece of the machine can leave some functions intact while destroying others. The clinical complexity of the ciliopathies can therefore only be understood in light of the basic cell biology of the cilia themselves, which I will discuss from the viewpoint of cell biological studies in model organisms.


Sign in / Sign up

Export Citation Format

Share Document