directed motility
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 11)

H-INDEX

27
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Fabrizio Ferrari ◽  
Luca Bedetti ◽  
Natascia Bertoncelli ◽  
Maria Federica Roversi ◽  
Elisa Della Casa ◽  
...  

Background: Few studies conducted to date have observed general movements in infants affected by hypoxic–ischemic encephalopathy (HIE) who underwent therapeutic hypothermia. We investigated whether foot-to-foot contact (FF) could support the predictive value of fidgety movements (FMs) in infants affected by HIE and treated with brain cooling.Methods: Spontaneous motility was video recorded for 3–5 min at 12 weeks post-term age in 58 full-term newborn infants affected by perinatal asphyxia who were cooled due to moderate to severe HIE. FF and FMs were blindly scored by three independent observers. At 24 months, each patient underwent a neurological examination by Amiel-Tison and Grenier.Results: At 24 months, 47 infants had developed typically at neurological examination, eight had developed mild motor impairment, and three developed cerebral palsy (CP). At 12 weeks, 34 (58.6%) infants had shown normal FMs, four of whom developed mild motor impairment. Twenty-four infants (41.4%) exhibited abnormal or no FMs, four of whom developed mild motor impairment and three developed CP. FF was present in 20 infants (34.5%), two of whom developed mild motor impairment. FF was absent in 38 infants (65.5%), six of whom developed mild motor impairment and three developed CP. Both FMs and FF, considered separately, were 100% sensitive for predicting CP at 24 months, but only 61 and 36%, respectively, were specific. Summing the two patterns together, the specificity increases to 73%, considering only CP as an abnormal outcome, and increases to 74% when considering CP plus mild motor impairment. Unexpectedly, fidgety movements were absent in 24 infants with typical motor outcomes, 17 of whom showed a typical motor outcome.Conclusions: FF is already part of motor repertoire at 12 weeks and allows a comparison of spontaneous non-voluntary movements (FMs) to pre-voluntary movements (FF). FF supports FMs for both sensitivity and specificity. A second video recording at 16–18 weeks, when pedipulation is present in healthy infants, is suggested: it may better define the presence or absence of goal-directed motility.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nicolas Waisbord ◽  
Amin Dehkharghani ◽  
Jeffrey S. Guasto

AbstractDirected motility enables swimming microbes to navigate their environment for resources via chemo-, photo-, and magneto-taxis. However, directed motility competes with fluid flow in porous microbial habitats, affecting biofilm formation and disease transmission. Despite this broad importance, a microscopic understanding of how directed motility impacts the transport of microswimmers in flows through constricted pores remains unknown. Through microfluidic experiments, we show that individual magnetotactic bacteria directed upstream through pores display three distinct regimes, whereby cells swim upstream, become trapped within a pore, or are advected downstream. These transport regimes are reminiscent of the electrical conductivity of a diode and are accurately predicted by a comprehensive Langevin model. The diode-like behavior persists at the pore scale in geometries of higher dimension, where disorder impacts conductivity at the sample scale by extending the trapping regime over a broader range of flow speeds. This work has implications for our understanding of the survival strategies of magnetotactic bacteria in sediments and for developing their use in drug delivery applications in vascular networks.


2021 ◽  
Author(s):  
Alex F Thompson ◽  
Patrick R Blackburn ◽  
Dusica Babovic-Vuksanovic ◽  
Jane B Lian ◽  
Eric W Klee ◽  
...  

The chromokinesin KIF22 uses plus end-directed motility and direct binding to chromosome arms to generate pushing forces that contribute to mitotic chromosome congression and alignment. Mutations in the motor domain of KIF22 have been identified in patients with abnormal skeletal development, and we report the identification of a patient with a novel mutation in the coiled-coil domain of the KIF22 tail. The mechanism by which these mutations affect development is unknown. We assessed whether pathogenic mutations affect the function of KIF22 in mitosis and demonstrate that mutations do not result in a loss of KIF22 function. Pathogenic mutations did not alter the localization or prometaphase function of KIF22. Instead, mutations disrupted chromosome segregation in anaphase, resulting in reduced proliferation, abnormal daughter cell nuclear morphology and, in a subset of cells, cytokinesis failure. This phenotype could be explained by a failure of KIF22 to inactivate in anaphase. Consistent with this model, a phosphomimetic mutation, which constitutively activates the motor, phenocopied the effects of pathogenic mutations. These findings offer insight into the mechanism by which mutations in KIF22 may affect human development, the balance between polar ejection forces and antiparallel microtubule sliding in anaphase, and potential mechanisms of KIF22 regulation.


2021 ◽  
Vol 93 (12) ◽  
pp. 5211-5217
Author(s):  
Li Xia ◽  
Li-Juan Zhang ◽  
Hong-Wu Tang ◽  
Dai-Wen Pang

2021 ◽  
Author(s):  
Alexander D. Cook ◽  
Anthony Roberts ◽  
Joseph Atherton ◽  
Rita Tewari ◽  
Maya Topf ◽  
...  

ABSTRACTPlasmodium parasites cause malaria and are responsible annually for hundreds of thousands of deaths. They have a complex life cycle in which distinct stages are transmitted between, and reproduce in, human and mosquito hosts. In the light of emerging resistance to current therapies, components of the parasite replicative machinery are potentially important targets for anti-parasite drugs. Members of the superfamily of kinesin motors play important roles in the microtubule-based replicative spindle machinery, and kinesin-5 motors are established anti-mitotic targets in other disease contexts. We therefore studied kinesin-5 from Plasmodium falciparum (PfK5) and characterised the biochemical properties and structure of the PfK5 motor domain. We found that the PfK5 motor domain is an ATPase with microtubule plus-end directed motility. We used cryo-EM to determine the motor’s microtubule-bound structure in no nucleotide and AMPPNP-bound states. Despite significant sequence divergence in this motor, these structures reveal that this parasite motor exhibits classical kinesin mechanochemistry. This includes ATP-induced neck-linker docking to the motor domain, which is consistent with the motor’s plus-ended directed motility. Crucially, we also observed that a large insertion in loop5 of the PfK5 motor domain creates a dramatically different chemical environment in the well characterised human kinesin-5 drug-binding site. Our data thereby reveal the possibility for selective inhibition of PfK5 and can be used to inform future exploration of Plasmodium kinesins as anti-parasite targets.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Frank D. Müller ◽  
Dirk Schüler ◽  
Daniel Pfeiffer

ABSTRACT Magnetotactic bacteria are aquatic or sediment-dwelling microorganisms able to take advantage of the Earth’s magnetic field for directed motility. The source of this amazing trait is magnetosomes, unique organelles used to synthesize single nanometer-sized crystals of magnetic iron minerals that are queued up to build an intracellular compass. Most of these microorganisms cannot be cultivated under controlled conditions, much less genetically engineered, with only few exceptions. However, two of the genetically amenable Magnetospirillum species have emerged as tractable model organisms to study magnetosome formation and magnetotaxis. Recently, much has been revealed about the process of magnetosome biogenesis and dedicated structures for magnetosome dynamics and positioning, which suggest an unexpected cellular intricacy of these organisms. In this minireview, we summarize new insights and place the molecular mechanisms of magnetosome formation in the context of the complex cell biology of Magnetospirillum spp. First, we provide an overview on magnetosome vesicle synthesis and magnetite biomineralization, followed by a discussion of the perceptions of dynamic organelle positioning and its biological implications, which highlight that magnetotactic bacteria have evolved sophisticated mechanisms to construct, incorporate, and inherit a unique navigational device. Finally, we discuss the impact of magnetotaxis on motility and its interconnection with chemotaxis, showing that magnetotactic bacteria are outstandingly adapted to lifestyle and habitat.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Abril Angélica Escamilla-Ayala ◽  
Ragna Sannerud ◽  
Magali Mondin ◽  
Karin Poersch ◽  
Wendy Vermeire ◽  
...  

γ-Secretase is a multi-subunit enzyme whose aberrant activity is associated with Alzheimer’s disease and cancer. While its structure is atomically resolved, γ-secretase localization in the membrane in situ relies mostly on biochemical data. Here, we combined fluorescent tagging of γ-secretase subunits with super-resolution microscopy in fibroblasts. Structured illumination microscopy revealed single γ-secretase complexes with a monodisperse distribution and in a 1:1 stoichiometry of PSEN1 and nicastrin subunits. In living cells, sptPALM revealed PSEN1/γ-secretase mainly with directed motility and frequenting ‘hotspots’ or high track-density areas that are sensitive to γ-secretase inhibitors. We visualized γ-secretase association with substrates like amyloid precursor protein and N-cadherin, but not with its sheddases ADAM10 or BACE1 at the cell surface, arguing against pre-formed megadalton complexes. Nonetheless, in living cells PSEN1/γ-secretase transiently visits ADAM10 hotspots. Our results highlight the power of super-resolution microscopy for the study of γ-secretase distribution and dynamics in the membrane.


Author(s):  
Diana K. Franco-Bocanegra ◽  
Bethany George ◽  
Laurie C. Lau ◽  
Clive Holmes ◽  
James A. R. Nicoll ◽  
...  

Abstract Microglial function is highly dependent on cell motility, with baseline motility required for homeostatic surveillance activity and directed motility to migrate towards a source of injury. Experimental evidence suggests impaired microglial motility in Alzheimer’s disease (AD) and therefore we have investigated whether the expression of proteins associated with motility is altered in AD and affected by the Aβ immunotherapy using post-mortem brain tissue of 32 controls, 44 AD cases, and 16 AD cases from our unique group of patients immunised against Aβ42 (iAD). Sections of brain were immunolabelled and quantified for (i) the motility-related microglial proteins Iba1, cofilin 1 (CFL1), coronin-1a (CORO1A) and P2RY12, and (ii) pan-Aβ, Aβ42 and phosphorylated tau (ptau). The neuroinflammatory environment was characterised using Meso Scale Discovery multiplex assays. The expression of all four motility-related proteins was unmodified in AD compared with controls, whereas Iba1 and P2RY12, the homeostatic markers, were increased in the iAD group compared with AD. Iba1 and P2RY12 showed significant positive correlations with Aβ in controls but not in the AD or iAD groups. Pro- and anti-inflammatory proteins were increased in AD, whereas immunotherapy appears to result in a slightly less pro-inflammatory environment. Our findings suggest that as Aβ appears during the ageing process, the homeostatic Iba1 and P2RY12 –positive microglia respond to Aβ, but this response is absent in AD. Aβ-immunisation promoted increased Iba1 and P2RY12 expression, likely reflecting increased baseline microglial motility but without restoring the profile observed in controls.


2019 ◽  
Vol 20 (17) ◽  
pp. 4213 ◽  
Author(s):  
Sabine Müller ◽  
Pantelis Livanos

Kinesin-12 family members are characterized by an N-terminal motor domain and the extensive presence of coiled-coil domains. Animal orthologs display microtubule plus-end directed motility, bundling of parallel and antiparallel microtubules, plus-end stabilization, and they play a crucial role in spindle assembly. In plants, kinesin-12 members mediate a number of developmental processes including male gametophyte, embryo, seedling, and seed development. At the cellular level, they participate in critical events during cell division. Several kinesin-12 members localize to the phragmoplast midzone, interact with isoforms of the conserved microtubule cross-linker MICROTUBULE-ASSOCIATED PROTEIN 65 (MAP65) family, and are required for phragmoplast stability and expansion, as well as for proper cell plate development. Throughout cell division, a subset of kinesin-12 reside, in addition or exclusively, at the cortical division zone and mediate the accurate guidance of the phragmoplast. This review aims to summarize the current knowledge on kinesin-12 in plants and shed some light onto the heterogeneous localization and domain architecture, which potentially conceals functional diversification.


2019 ◽  
Vol 13 ◽  
Author(s):  
Weilun Sun ◽  
Kunimichi Suzuki ◽  
Dmytro Toptunov ◽  
Stoyan Stoyanov ◽  
Michisuke Yuzaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document