scholarly journals Materials informatics platform with three dimensional structures, workflow and thermoelectric applications

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mingjia Yao ◽  
Yuxiang Wang ◽  
Xin Li ◽  
Ye Sheng ◽  
Haiyang Huo ◽  
...  

AbstractSince the proposal of the “Materials Genome Initiative”, several material databases have emerged and advanced many materials fields. In this work, we present the Materials Informatics Platform with Three-Dimensional Structures (MIP-3d). More than 80,000 structural entries, mainly from the inorganic crystal structural database, are included in MIP-3d. Density functional theory calculations are carried out for over 30,000 entries in the database, which contain the relaxed crystal structures, density of states, and band structures. The calculation of the equations of state and sound velocities is performed for over 12,000 entries. Notably, for entries with band gap values larger than 0.3 eV, the band degeneracies for the valence band maxima and the conduction band minima are analysed. The electrical transport properties for approximately 4,400 entries are also calculated and presented in MIP-3d under the constant electron-phonon coupling approximation. The calculations of the band degeneracies and electrical transport properties make MIP-3d a database specifically designed for thermoelectric applications.

2018 ◽  
Vol 5 (3) ◽  
pp. 536-544 ◽  
Author(s):  
Xing Sun ◽  
Jijie Huang ◽  
Jie Jian ◽  
Meng Fan ◽  
Han Wang ◽  
...  

A novel three-dimensional (3D) framework with integrated lateral and vertical interfaces, enables the power of 3D strain tuning and improves its electrical transport properties.


2021 ◽  
Author(s):  
Dongha Shin ◽  
Hwa Rang Kim ◽  
Byung Hee Hong

Since of its first discovery, graphene has attracted much attention because of the unique electrical transport properties that can be applied to high-performance field-effect transistor (FET). However, mounting chemical functionalities...


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 746
Author(s):  
Meiling Hong ◽  
Lidong Dai ◽  
Haiying Hu ◽  
Xinyu Zhang

A series of investigations on the structural, vibrational, and electrical transport characterizations for Ga2Se3 were conducted up to 40.2 GPa under different hydrostatic environments by virtue of Raman scattering, electrical conductivity, high-resolution transmission electron microscopy, and atomic force microscopy. Upon compression, Ga2Se3 underwent a phase transformation from the zinc-blende to NaCl-type structure at 10.6 GPa under non-hydrostatic conditions, which was manifested by the disappearance of an A mode and the noticeable discontinuities in the pressure-dependent Raman full width at half maximum (FWHMs) and electrical conductivity. Further increasing the pressure to 18.8 GPa, the semiconductor-to-metal phase transition occurred in Ga2Se3, which was evidenced by the high-pressure variable-temperature electrical conductivity measurements. However, the higher structural transition pressure point of 13.2 GPa was detected for Ga2Se3 under hydrostatic conditions, which was possibly related to the protective influence of the pressure medium. Upon decompression, the phase transformation and metallization were found to be reversible but existed in the large pressure hysteresis effect under different hydrostatic environments. Systematic research on the high-pressure structural and electrical transport properties for Ga2Se3 would be helpful to further explore the crystal structure evolution and electrical transport properties for other A2B3-type compounds.


Sign in / Sign up

Export Citation Format

Share Document