scholarly journals Autocatalytic Time-Dependent Evolution of Metastable Two-Component Supramolecular Assemblies to Self-Sorted or Coassembled State

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Tomoya Fukui ◽  
Masayuki Takeuchi ◽  
Kazunori Sugiyasu
2021 ◽  
Author(s):  
Jian Qu ◽  
Xin Zhang ◽  
Zhong-Jie Wang ◽  
Shuyan Zhang ◽  
Yejian Yu ◽  
...  

Time-dependent evolutive afterglow materials can increase the security level by providing additional encryption modes in anti-counterfeiting and data encryption. The design of carbon-based materials with dynamic afterglow colors is attractive...


2021 ◽  
Author(s):  
Nishant Singh ◽  
Álvaro Lopéz-Acosta ◽  
Georges Formon ◽  
Thomas Hermans

Narcissistic self-sorting in supramolecular assemblies can help to construct materials with more complex hierarchies. Whereas controlled changes in pH or temperature have been used to this extent for two-component self-sorted gels, here we show that a chemically fueled approach can provide three-component materials with high precision. The latter materials have interesting mechanical properties, such as enhanced or suppressed stiffness, and intricate multi-step gelation kinetics. In addition, we show that we can achieve supramolecular templating, where pre-existing supramolecular fibers first act as a templates for growth of a second gelator, after which they can selectively be removed.


1974 ◽  
Vol 41 (3) ◽  
pp. 652-657 ◽  
Author(s):  
Bernard W. Shaffer ◽  
Myron Levitsky

Thermoelastic constitutive equations are derived for a material undergoing solidification or hardening as the result of a chemical reaction. The derivation is based upon a two component model whose composition is determined by the degree of hardening, and makes use of strain-energy considerations. Constitutive equations take the form of stress rate-strain rate relations, in which the coefficients are time-dependent functions of the composition. Specific results are developed for the case of a material of constant bulk modulus which undergoes a transition from an initial liquidlike state into an isotropic elastic solid. Potential applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document