scholarly journals Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Benjamin L. Smarr ◽  
Azure D. Grant ◽  
Luz Perez ◽  
Irving Zucker ◽  
Lance J. Kriegsfeld
2007 ◽  
Vol 91 (1) ◽  
pp. 154-160 ◽  
Author(s):  
Leslie R. Meek ◽  
Kirsten Myren ◽  
Juliane Sturm ◽  
Dawn Burau

2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S320-S320
Author(s):  
Miles G Taylor ◽  
Stephanie Ureña ◽  
Dawn Carr ◽  
Stella N Min

Abstract Objectives Drawing on the life course framework and theoretical concept of resilience, we examine the impact of early-life service-related exposures (SREs) on later-life functional impairment trajectories among older U.S. male veterans. We conceptualize resilience as a psychological resource potentially moderating the lasting negative consequences of traumatic military exposures. Method Using the 2013 Veterans Mail Survey linked to the Health and Retirement Study 2006–2014 Leave Behind Questionnaire and RAND Data File (v.N), we estimate latent growth curve models of functional impairment trajectories. Results SRE to death has a persistent positive effect on functional limitations and activities of daily living limitations. Psychological resilience significantly moderates this association, such that veterans maintaining higher levels of resilience in the face of adverse exposures have considerably less functional impairment over time compared to their counterparts with low levels of resilience. Discussion Our findings point to the importance of psychological resilience in later life, especially within the realm of traumas occurring in early life. We discuss implications for current military training programs, stressing the importance of research considering individual resources and processes that promote adaptation in the face of adverse life events.


2015 ◽  
Vol 26 (4) ◽  
Author(s):  
Deepika Suri ◽  
Vidita A. Vaidya

AbstractExposure to stressors elicits a spectrum of responses that span from potentially adaptive to maladaptive consequences at the structural, cellular and physiological level. These responses are particularly pronounced in the hippocampus where they also appear to influence hippocampal-dependent cognitive function and emotionality. The factors that influence the nature of stress-evoked consequences include the chronicity, severity, predictability and controllability of the stressors. In addition to adult-onset stress, early life stress also elicits a wide range of structural and functional responses, which often exhibit life-long persistence. However, the outcome of early stress exposure is often contingent on the environment experienced in adulthood, and could either aid in stress coping or could serve to enhance susceptibility to the negative consequences of adult stress. This review comprehensively examines the consequences of adult and early life stressors on the hippocampus, with a focus on their effects on neurogenesis, neuronal survival, structural and synaptic plasticity and hippocampal-dependent behaviors. Further, we discuss potential factors that may tip stress-evoked consequences from being potentially adaptive to largely maladaptive.


2018 ◽  
Author(s):  
Anne-Sophie Charlotte Hieke ◽  
Shawna Marie Hubert ◽  
Giridhar Athrey

The gut microbiota is crucial for metabolic homeostasis, immunity, growth and overall health, and it recognized that early-life microbiota acquisition is a pivotal event for later life health. Recent studies show that gut microbiota diversity and functional activity are synchronized with the host circadian rhythms in healthy individuals, and circadian disruption elicits dysbiosis in mammalian models. However, no studies have determined the associations between circadian disruption in early life, microbiota colonization, and the consequences for microbiota structure in birds. Chickens, as a major source of protein around the world, are one of the most important agricultural species, and their gut and metabolic health are significant concerns. The poultry industry routinely employs extended photoperiods (>18 hours’ light) as a management tool, and their impacts on the chicken circadian, its role in gut microbiota acquisition in early life, and consequences for later life microbiota structure remain unknown. In this study, the objectives were to a) characterize chicken circadian activity under two different light regimes (12/12 hours’ Light/Dark and 23/1 hours Light/Dark), b) characterize gut microbiota acquisition and composition in the first four weeks of life, c) determine if gut microbiota oscillate in synchrony with the host circadian, and d) to determine if fecal microbiota is representative of cecal microbiota. Expression of clock genes (clock, bmal1, and per2) were assayed, and fecal and cecal microbiota was characterized using 16s rRNA amplicon analyses from birds raised under two photoperiod treatments. Chickens raised under 12/12 LD photoperiods exhibited rhythmic clock gene activity, which was absent in birds raised under the extended (23/1 LD) photoperiod. This study is also the first to report differential microbiota acquisition under different photoperiod regimes. Gut microbiota members showed a similar oscillating pattern as the host, but this association was not as strong as found in mammals. Finally, the fecal microbiota was found to be not representative of cecal microbiota membership and structure. This is one of the first studies to demonstrate the use of photoperiods to modulate microbiota acquisition, and show its potential utility as a tool to promote the colonization of beneficial microorganisms.


2018 ◽  
Author(s):  
Anne-Sophie Charlotte Hieke ◽  
Shawna Marie Hubert ◽  
Giridhar Athrey

The gut microbiota is crucial for metabolic homeostasis, immunity, growth and overall health, and it recognized that early-life microbiota acquisition is a pivotal event for later life health. Recent studies show that gut microbiota diversity and functional activity are synchronized with the host circadian rhythms in healthy individuals, and circadian disruption elicits dysbiosis in mammalian models. However, no studies have determined the associations between circadian disruption in early life, microbiota colonization, and the consequences for microbiota structure in birds. Chickens, as a major source of protein around the world, are one of the most important agricultural species, and their gut and metabolic health are significant concerns. The poultry industry routinely employs extended photoperiods (>18 hours’ light) as a management tool, and their impacts on the chicken circadian, its role in gut microbiota acquisition in early life, and consequences for later life microbiota structure remain unknown. In this study, the objectives were to a) characterize chicken circadian activity under two different light regimes (12/12 hours’ Light/Dark and 23/1 hours Light/Dark), b) characterize gut microbiota acquisition and composition in the first four weeks of life, c) determine if gut microbiota oscillate in synchrony with the host circadian, and d) to determine if fecal microbiota is representative of cecal microbiota. Expression of clock genes (clock, bmal1, and per2) were assayed, and fecal and cecal microbiota was characterized using 16s rRNA amplicon analyses from birds raised under two photoperiod treatments. Chickens raised under 12/12 LD photoperiods exhibited rhythmic clock gene activity, which was absent in birds raised under the extended (23/1 LD) photoperiod. This study is also the first to report differential microbiota acquisition under different photoperiod regimes. Gut microbiota members showed a similar oscillating pattern as the host, but this association was not as strong as found in mammals. Finally, the fecal microbiota was found to be not representative of cecal microbiota membership and structure. This is one of the first studies to demonstrate the use of photoperiods to modulate microbiota acquisition, and show its potential utility as a tool to promote the colonization of beneficial microorganisms.


2021 ◽  
Vol 15 ◽  
Author(s):  
Linda Tsan ◽  
Léa Décarie-Spain ◽  
Emily E. Noble ◽  
Scott E. Kanoski

The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.


2021 ◽  
Author(s):  
Xin Zhao ◽  
Hieu Tran ◽  
Holly DeRose ◽  
Ryland C Roderick ◽  
Amanda C Kentner

While there is a strong focus on the negative consequences of maternal immune activation (MIA) on the developing brain, very little attention is directed towards potential advantages of early life challenges. In this study we utilized a polyinosine-polycytidylic acid (poly(I:C)) MIA model to test visual discrimination (VD) and reversal learning (RL) in mice using touchscreen technology. Significant sex differences emerged in that MIA improved the latency for males to make a correct choice in the VD task while females reached criterion sooner, made fewer errors and utilized fewer correction trials in RL compared to saline-treated controls. These surprising improvements were accompanied by the sex-specific upregulation of several neural markers critical to cognitive functioning (e.g., Gabrg2, Grin1, Grin2b, Htr2a, Chrm1, Prkca, and Camk2a mRNA in prefrontal cortex (PFC)), indicative of compensatory plasticity in response to the MIA challenge. In contrast, when exposed to a "two-hit" stress model (MIA combined with loss of the social component of environmental enrichment (EE)), mice showed no evidence of anhedonia but required an increased number of PD and RL correction trials. These animals also had significant reductions of CamK2a mRNA in the PFC. Appropriate functioning of synaptic plasticity, via mediators such as this protein kinase and others, are critical for behavioral flexibility. Although EE has been implicated in delaying the appearance of symptoms associated with certain brain disorders, these findings are in line with evidence that it also makes individuals more vulnerable to its loss. Overall, with the right "dose", early life stress exposure can confer at least some functional advantages, which are lost when the number or magnitude of these exposures become too great.


2015 ◽  
Vol 91 (11) ◽  
pp. 643-647 ◽  
Author(s):  
Pat Monaghan ◽  
Mark F. Haussmann

2003 ◽  
Vol 117A (3) ◽  
pp. 245-250 ◽  
Author(s):  
Gillian Turner ◽  
Agi Gedeon ◽  
Bronwyn Kerr ◽  
Rachael Bennett ◽  
John Mulley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document