microbiota structure
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 79)

H-INDEX

14
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Jinjin Li ◽  
Jialin Li ◽  
Jiajia Ni ◽  
Caibo Zhang ◽  
Jianlei Jia ◽  
...  

Whether berberine mediates its anti-inflammatory and blood sugar and lipid-lowering effects solely by adjusting the structure of the gut microbiota or by first directly regulating the expression of host pro-inflammatory proteins and activation of macrophages and subsequently acting on gut microbiota, is currently unclear. To clarify the mechanism of berberine-mediated regulation of metabolism, we constructed an obese mouse model using SPF-grade C57BL/6J male mice and conducted a systematic study of liver tissue pathology, inflammatory factor expression, and gut microbiota structure. We screened the gut microbiota targets of berberine and showed that the molecular mechanism of berberine-mediated treatment of metabolic syndrome involves the regulation of gut microbiota structure and the expression of inflammatory factors. Our results revealed that a high-fat diet (HFD) significantly changed mice gut microbiota, thereby probably increasing the level of toxins in the intestine, and triggered the host inflammatory response. The HFD also reduced the proportion of short-chain fatty acid (SCFA)-producing genes, thereby hindering mucosal immunity and cell nutrition, and increased the host inflammatory response and liver fat metabolism disorders. Further, berberine could improve the chronic HFD-induced inflammatory metabolic syndrome to some extent and effectively improved the metabolism of high-fat foods in mice, which correlated with the gut microbiota composition. Taken together, our study may improve our understanding of host-microbe interactions during the treatment of metabolic diseases and provide useful insights into the action mechanism of berberine.


2021 ◽  
Author(s):  
Laura Symul ◽  
Pratheepa Jeganathan ◽  
Elizabeth K. Costello ◽  
Michael France ◽  
Seth M. Bloom ◽  
...  

AbstractDiverse and non-Lactobacillus-dominated vaginal microbial communities are associated with adverse health outcomes such as preterm birth and acquisition of sexually transmitted infections. Despite the importance of recognizing and understanding the key risk-associated features of these communities, their heterogeneous structure and properties remain ill-defined. Clustering approaches have been commonly used to characterize vaginal communities, but they lack sensitivity and robustness in resolving community substructures and revealing transitions between potential sub-communities. We used a more highly resolved approach based on mixed membership topic models with multi-domain longitudinal data from cohorts of pregnant and non-pregnant subjects to identify several non-Lactobacillus-dominated sub-communities common to women regardless of reproductive status. These sub-communities correlated with clusters of metabolites. In non-pregnant subjects, we identified a few sub-communities that were more common during menses but did not predict an increased likelihood of non-Lactobacillus-dominated communities during the rest of the menstrual cycle. The menstrual cycle was a strong driver of transitions between sub-communities and was correlated with changes in levels of cytokines, for example, elevated TNF-α concentrations at the time of ovulation, and metabolites, for example, elevated kynurenine concentrations during menses. In pregnant women, some metabolite clusters were predictive of changes in vaginal microbiota structure. Overall, our results show that the vaginal community substructure is shaped by the menstrual cycle and that specific sets of metabolites are associated with community instability during pregnancy.


2021 ◽  
Vol 9 (12) ◽  
pp. 2524
Author(s):  
Minhong Ren ◽  
He Li ◽  
Zhen Fu ◽  
Quanyang Li

The gut microbiota structure has been proposed to be involved in longevity. In this study, trajectories of age-related changes in gut microbiota were analyzed by comparing the gut microbiota composition from long-lived families. A specific bacterial community pattern and signature taxa of long-lived people were found in long-lived families, such as the enrichment of Enterobacteriaceae in all age groups and the higher abundances of Christensenellaceae, Verrucomicrobiaceae, Porphyromonadaceae, Rikenellaceae, Mogibacteriaceae, and Odoribacteraceae in long-lived elderly and the positive correlation between them. The cumulative abundance of the core microbiota was approximately stable along with age, but the genera and species in the core microbiota were rearranged with age, especially in Ruminococcaceae and Lachnospiraceae. Compared with the control group, the proportions of Lachnospiraceae, Roseburia, and Blautia were significantly higher in participants from the long-lived village, but their abundances gradually decreased along with age. Based on functional predictions, the proportions of pathways related to short-chain fatty acid metabolism, amino acid metabolism, and lipoic acid metabolism were significantly higher in the long-lived elderly compared with the offspring group. The trajectory of gut microbiota composition along with age in participants from long-lived families might reveal potential health-promoting metabolic characteristics, which could play an important role in healthy aging.


Author(s):  
Xiang Wang ◽  
Pei Ye ◽  
Li Fang ◽  
Sheng Ge ◽  
Fan Huang ◽  
...  

Cigarette smoking could have certain effects on gut microbiota. Some pioneering studies have investigated effects of active smoking on the microbiome in local segments of the digestive tract, while active smoking-induced microbiome alterations in the whole digestive tract have not been fully investigated. Here, we developed a rat model of active smoking and characterized the effects of active smoking on the microbiota within multiple regions along the digestive tract. Blood glucose and some metabolic factors levels, the microbial diversity and composition, relative abundances of taxa, bacterial network correlations and predictive functional profiles were compared between the control group and active smoking group. We found that active smoking induced hyperglycemia and significant reductions in serum insulin and leptin levels. Active smoking induced region-specific shifts in microbiota structure, composition, network correlation and metabolism function along the digestive tract. Our results demonstrated that active smoking resulted in a reduced abundance of some potentially beneficial genera (i.e. Clostridium, Turicibacter) and increased abundance of potentially harmful genera (i.e. Desulfovibrio, Bilophila). Functional prediction suggested that amino acid, lipid, propanoate metabolism function could be impaired and antioxidant activity may be triggered. Active smoking may be an overlooked risk to health through its potential effects on the digestive tract microbiota, which is involved in the cause and severity of an array of chronic diseases.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jiaqiang Wu ◽  
Haoyu Lang ◽  
Xiaohuan Mu ◽  
Zijing Zhang ◽  
Qinzhi Su ◽  
...  

Abstract Background Honey bee gut microbiota transmitted via social interactions are beneficial to the host health. Although the microbial community is relatively stable, individual variations and high strain-level diversity have been detected across honey bees. Although the bee gut microbiota structure is influenced by environmental factors, the heritability of the gut members and the contribution of the host genetics remains elusive. Considering bees within a colony are not readily genetically identical due to the polyandry of the queen, we hypothesize that the microbiota structure can be shaped by host genetics. Results We used shotgun metagenomics to simultaneously profile the microbiota and host genotypes of bees from hives of four different subspecies. Gut composition is more distant between genetically different bees at both phylotype- and “sequence-discrete population” levels. We then performed a successive passaging experiment within colonies of hybrid bees generated by artificial insemination, which revealed that the microbial composition dramatically shifts across batches of bees during the social transmission. Specifically, different strains from the phylotype of Snodgrassella alvi are preferentially selected by genetically varied hosts, and strains from different hosts show a remarkably biased distribution of single-nucleotide polymorphism in the Type IV pili loci. Genome-wide association analysis identified that the relative abundance of a cluster of Bifidobacterium strains is associated with the host glutamate receptor gene specifically expressed in the bee brain. Finally, mono-colonization of Bifidobacterium with a specific polysaccharide utilization locus impacts the alternative splicing of the gluR-B gene, which is associated with an increased GABA level in the brain. Conclusions Our results indicated that host genetics influence the bee gut composition and suggest a gut-brain connection implicated in the gut bacterial strain preference. Honey bees have been used extensively as a model organism for social behaviors, genetics, and the gut microbiome. Further identification of host genetic function as a shaping force of microbial structure will advance our understanding of the host-microbe interactions.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shugui Zheng ◽  
Jichen Song ◽  
Xia Qin ◽  
Kai Yang ◽  
Mei Liu ◽  
...  

AbstractRed-osier dogwood (ROD) extract contains a lot of polyphenols that have the potential for modulation of gut microbiota. However, little information is available about its prebiotic properties. This study investigated the impact of ROD polyphenol extract on the ileal microbiota with dietary supplementation of ROD polyphenol extract in a pig model. The data indicated that supplementation of ROD polyphenol extract significantly increased class Bacilli, order Lactobacillales and family lactobacillaceae. Within family lactobacillaceae, Lactobacillus was the main responder by increasing from 5.92% to 35.09%. Further analysis showed that ROD polyphenol extract improved two species Lactobacillus delbrueckii and Lactobacillus mucus. The results of this study suggested that ROD polyphenol extract has the potential to play prebiotic role and confer health benefit through modifying gut microbiota.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Song ◽  
Li-Ying Sun ◽  
Zhi-Jun Zhu ◽  
Lin Wei ◽  
Wei Qu ◽  
...  

Background and AimsBiliary atresia is the most common cause of liver disease and liver transplantation in children. The accumulation of bile acids in hepatocytes and the stimulation of the intestinal microbiome can aggravate the disease progression. This study investigated changes in the composition of the gut microbiota and its metabolites in biliary atresia and the possible effects of these changes on disease progression.MethodsStool samples of biliary atresia at different disease stages and matched control individuals were collected (early stage: 16 patients, 16 controls; later stage: 16 patients, 10 controls). Metagenomic sequencing was performed to evaluate the gut microbiota structure. Untargeted metabolomics was performed to detect and analyze the metabolites and bile acid composition.ResultsA disturbed gut microbiota structure occurred in the early and later stages of biliary atresia. Klebsiella, Streptococcus, Veillonella, and Enterococcus have always been dominant. The abundance of V. atypica displayed significant changes between the early and later stages of biliary atresia. Combined with clinical indicators, Spearman’s analysis showed that Klebsiella and Veillonella atypica strongly correlated with liver enzymes. Enterococcus faecium had an enormously positive relationship with lithocholic acid derivatives. Metabolites involved in tryptophan metabolism were changed in the patients with biliary atresia, which had a significant association with stool V. atypica and blood total bilirubin (p < 0.05).ConclusionsThe liver damage of biliary atresia was directly or indirectly exacerbated by the interaction of enriched Klebsiella (K. pneumoniae), Veillonella (V. atypica), and Enterococcus (E. faecium) with dysmetabolism of tryptophan and bile acid.


Sign in / Sign up

Export Citation Format

Share Document