scholarly journals Effects of Lipoic Acid on High-Fat Diet-Induced Alteration of Synaptic Plasticity and Brain Glucose Metabolism: A PET/CT and 13C-NMR Study

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhigang Liu ◽  
Ishan Patil ◽  
Harsh Sancheti ◽  
Fei Yin ◽  
Enrique Cadenas
2020 ◽  
Vol 12 ◽  
Author(s):  
Yan-hui Zhang ◽  
Xin-zhu Yan ◽  
Shuang-feng Xu ◽  
Zhong-qiu Pang ◽  
Lin-bo Li ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0161325 ◽  
Author(s):  
Weishan Zhang ◽  
Ning Ning ◽  
Xianjun Li ◽  
Gang Niu ◽  
Lijun Bai ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Chih-Yuan Ko ◽  
Jian-Hua Xu ◽  
Yangming Martin Lo ◽  
Rong-Syuan Tu ◽  
James Swi-Bea Wu ◽  
...  

Background: The intricate relationship between type 2 diabetes mellitus (T2DM) and Alzheimer’s disease (AD) suggests that insulin is involved in modulating AD-related proteins. Alpha-lipoic acid (ALA) can improve insulin resistance (IR) in diabetic rats. However, the role of ALA in alleviating the cognitive decline of T2DM is not yet clear. This study examined the ameliorative effect of ALA on cognitive impairment, cerebral IR, and synaptic plasticity abnormalities in high-fat diet (HFD) plus streptozotocin (STZ) induced diabetic rats.Methods: The HFD/STZ-induced T2DM male Wistar rats were orally administered with ALA (50, 100, or 200 mg/kg BW) once a day for 13 weeks. Abilities of cognition were measured with a passive avoidance test and Morris water maze. Specimens of blood and brain were collected for biochemical analysis after the rats were sacrificed. Western blotting was used to determine protein expressions in the hippocampus and cortex in the insulin signaling pathways, long-term potentiation (LTP), and synaptic plasticity-related protein expressions.Results: Alpha-lipoic acid improved hyperinsulinemia and the higher levels of free fatty acids of the T2DM rats. Behavioral experiments showed that the administration of ALA improved cognitive impairment in HFD/STZ-induced T2DM rats. ALA ameliorated insulin-related pathway proteins [phosphoinositide 3-kinase (PI3K), phospho-protein kinase B (pAkt)/Akt, and insulin-degrading enzyme (IDE)] and the LTP pathway, as well as synaptic plasticity proteins (calmodulin-dependent protein kinase II, cyclic AMP response element-binding protein, and postsynaptic density protein-95) of the cerebral cortex or hippocampus in HFD/STZ-induced T2DM rats.Conclusion: Our findings suggested that ALA may ameliorate cognition impairment via alleviating cerebral IR improvement and cerebral synaptic plasticity in diabetic rats.


2018 ◽  
Vol 57 ◽  
pp. 20-25 ◽  
Author(s):  
Tomohiro Yamaki ◽  
Yoshio Uchino ◽  
Haruko Henmi ◽  
Mizuho Kamezawa ◽  
Miyoko Hayakawa ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Qiongyue Zhang ◽  
Qing Miao ◽  
Yehong Yang ◽  
Jiaying Lu ◽  
Huiwei Zhang ◽  
...  

IntroductionBrown adipose tissue (BAT) becomes the favorite target for preventing and treating metabolic diseases because the activated BAT can produce heat and consume energy. The brain, especially the hypothalamus, which secretes Neuropeptide Y (NPY), is speculated to regulate BAT activity. However, whether NPY is involved in BAT activity’s central regulation in humans remains unclear. Thus, it’s essential to explore the relationship between brain glucose metabolism and human BAT activity.MethodsA controlled study with a large sample of healthy adults used Positron emission tomography/computed tomography (PET/CT) to noninvasively investigate BAT’s activity and brain glucose metabolism in vivo. Eighty healthy adults with activated BAT according to the PET/CT scan volunteered to be the BAT positive group, while 80 healthy adults without activated BAT but with the same gender, similar age, and BMI, scanning on the same day, were recruited as the control (BAT negative). We use Statistical parametric mapping (SPM) to analyze the brain image data, Picture Archiving & Communication System (PACS), and PET/CT Viewer software to calculate the semi-quantitative values of brain glucose metabolism and BAT activity. ELISA tested the levels of fasting plasma NPY. The multiple linear regression models were used to analyze the correlation between brain glucose metabolism, the level of NPY, and the BAT activity in the BAT positive group.Results(1) Compared with controls, BAT positive group showed significant metabolic decreases mainly in the right Insula (BA13a, BA13b) and the right claustrum (uncorrected P <0.01, adjusted BMI). (2) The three brain regions’ semi-quantitative values in the BAT positive group were significantly lower than the negative group (all P values < 0.05). (3) After adjusting for age, gender, BMI, and outside temperature, there was a negative correlation between brain metabolic values and BAT activity (all P values < 0.05). However, after further adjusting for NPY level, there were no significant differences between the BA13b metabolic values and BAT activity (P>0.05), while the correlation between the BA13a metabolic values and BAT activity still was significant (P< 0.05).ConclusionsRegional brain glucose metabolism is closely related to healthy adults’ BAT activity, which may be mediated by NPY.


2014 ◽  
Vol 35 (10) ◽  
pp. 1285-1292 ◽  
Author(s):  
Yi Yang ◽  
Wang Li ◽  
Yang Liu ◽  
Yan Li ◽  
Ling Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document