scholarly journals High power and low critical current density spin transfer torque nano-oscillators using MgO barriers with intermediate thickness

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
J. D. Costa ◽  
S. Serrano-Guisan ◽  
B. Lacoste ◽  
A. S. Jenkins ◽  
T. Böhnert ◽  
...  
2015 ◽  
Vol 51 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Sibylle Sievers ◽  
Niklas Liebing ◽  
Santiago Serrano-Guisan ◽  
Ricardo Ferreira ◽  
Elvira Paz ◽  
...  

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744075
Author(s):  
B. Dai ◽  
J. Zhu ◽  
K. Liu ◽  
L. Yang ◽  
J. Han

Amorphous rare earth–transitional metal (RETM) GdFeCo memory layer with RE- and TM-rich compositions was fabricated in stacks of GdFeCo (10 nm)/Cu (3 nm)/[Co(0.2 nm)/Pd(0.4 nm)]6. Their magnetic properties and spin transfer torque (STT) switching of magnetization were investigated. The maximum magneto-resistance (MR) was around 0.24% for the TM-rich Gd[Formula: see text] (Fe[Formula: see text]Co[Formula: see text])[Formula: see text] memory layer and was −0.03% for the RE-rich Gd[Formula: see text] (Fe[Formula: see text]Co[Formula: see text])[Formula: see text] memory layer. The critical current densities [Formula: see text] to switch the GdFeCo memory layers are in the range of [Formula: see text] A/cm2–[Formula: see text] A/cm2. The dependence of critical current density [Formula: see text] and effective anisotropy constant [Formula: see text] on Gd composition were also investigated. Both [Formula: see text] and [Formula: see text] have maximum values in the Gd composition range from 21–29 at.%, suitable for thermally assisted STT-RAM for storage density exceeding Gb/inch2.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


Sign in / Sign up

Export Citation Format

Share Document