scholarly journals Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yohei Kurosaki ◽  
Danyelly Bruneska Gondim Martins ◽  
Mayuko Kimura ◽  
Andriu dos Santos Catena ◽  
Maria Amélia Carlos Souto Maior Borba ◽  
...  
2020 ◽  
Vol 48 (1) ◽  
Author(s):  
Hiroka Aonuma ◽  
Itoe Iizuka-Shiota ◽  
Tokio Hoshina ◽  
Shigeru Tajima ◽  
Fumihiro Kato ◽  
...  

Abstract Background Monitoring both invasion of Zika virus disease into free countries and circulation in endemic countries is essential to avoid a global pandemic. However, the difficulty lies in detecting Zika virus due to the large variety of mutations in its genomic sequence. To develop a rapid and simple method with high accuracy, reverse transcription-loop-mediated isothermal amplification (RT-LAMP) was adopted for the detection of Zika virus strains derived from several countries. Results Common primers for RT-LAMP were designed based on the genomic sequences of two standard Zika strains: African lineage, MR-766, and Asian lineage, PRVABC59. RT-LAMP reactions using a screened primer set, targeting the NS3 region, detected both Zika virus strains. The minimum detectable quantity was 3 × 10−2 ng of virus RNA. Measurable lag of reaction times among strains was observed. The RT-LAMP method amplified the target virus sequence from the urine and serum of a patient with a travel history in the Caribbean Islands and also provided a prediction about which lineage of Zika virus strain was present. Conclusions The RT-LAMP method using a well-optimized primer set demonstrated high specificity and sensitivity for the detection of Zika virus strains with a variety in genomic RNA sequences. In combination with the simplicity of LAMP reaction in isothermal conditions, the optimized primer set established in this study may facilitate rapid and accurate diagnosis of Zika fever patients with virus strain information.


Author(s):  
Laura E. Lamb ◽  
Sarah N. Bartolone ◽  
Elijah Ward ◽  
Michael B. Chancellor

AbstractNovel Corona virus (COVID-19 or 2019-nCoV) is an emerging global health concern that requires a rapid diagnostic test. Quantitative reverse transcription PCR (qRT-PCR) is currently the standard for COVID-19 detection; however, Reverse Transcription Loop-Mediated Isothermal Amplification (RT-LAMP) may allow for faster and cheaper field based testing at point-of-risk. The objective of this study was to develop a rapid screening diagnostic test that could be completed in under 30 minutes. Simulated patient samples were generated by spiking serum, urine, saliva, oropharyngeal swabs, and nasopharyngeal swabs with a portion of the COVID-19 nucleic sequence. The samples were tested using RT-LAMP as well as by conventional qRT-PCR. Specificity of the RT-LAMP was evaluated by also testing against other related coronaviruses. RT-LAMP specifically detected COVID-19 in simulated patient samples. This test was performed in under 30 minutes. This approach could be used for monitoring of exposed individuals or potentially aid with screening efforts in the field and potential ports of entry.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pedro A. Alves ◽  
Ellen G. de Oliveira ◽  
Ana Paula M. Franco-Luiz ◽  
Letícia T. Almeida ◽  
Amanda B. Gonçalves ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic unfolded due to the widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission reinforced the urgent need for affordable molecular diagnostic alternative methods for massive testing screening. We present the clinical validation of a pH-dependent colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) for SARS-CoV-2 detection. The method revealed a limit of detection of 19.3 ± 2.7 viral genomic copies/μL when using RNA extracted samples obtained from nasopharyngeal swabs collected in guanidine-containing viral transport medium. Typical RT-LAMP reactions were performed at 65°C for 30 min. When compared to reverse transcriptase–quantitative polymerase chain reaction (RT-qPCR), up to cycle-threshold (Ct) value 32, RT-LAMP presented 98% [95% confidence interval (CI) = 95.3–99.5%] sensitivity and 100% (95% CI = 94.5–100%) specificity for SARS-CoV-2 RNA detection targeting E and N genes. No cross-reactivity was detected when testing other non–SARS-CoV virus, confirming high specificity. The test is compatible with primary RNA extraction–free samples. We also demonstrated that colorimetric RT-LAMP can detect SARS-CoV-2 variants of concern and variants of interest, such as variants occurring in Brazil named gamma (P.1), zeta (P.2), delta (B.1.617.2), B.1.1.374, and B.1.1.371. The method meets point-of-care requirements and can be deployed in the field for high-throughput COVID-19 testing campaigns, especially in countries where COVID-19 testing efforts are far from ideal to tackle the pandemics. Although RT-qPCR is considered the gold standard for SARS-CoV-2 RNA detection, it requires expensive equipment, infrastructure, and highly trained personnel. In contrast, RT-LAMP emerges as an affordable, inexpensive, and simple alternative for SARS-CoV-2 molecular detection that can be applied to massive COVID-19 testing campaigns and save lives.


Sign in / Sign up

Export Citation Format

Share Document