scholarly journals ATP-mediated Events in Peritubular Cells Contribute to Sterile Testicular Inflammation

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Lena Walenta ◽  
David Fleck ◽  
Thomas Fröhlich ◽  
Hendrik von Eysmondt ◽  
Georg J. Arnold ◽  
...  
Reproduction ◽  
2018 ◽  
Vol 156 (3) ◽  
pp. 231-238 ◽  
Author(s):  
Lena Walenta ◽  
Nina Schmid ◽  
J Ullrich Schwarzer ◽  
Frank-Michael Köhn ◽  
Henryk F Urbanski ◽  
...  

NLRP3 is part of the NLRP3 inflammasome and a global sensor of cellular damage. It was recently discovered in rodent Sertoli cells. We investigated NLRP3 in mouse, human and non-human primate (marmoset and rhesus macaque) testes, employing immunohistochemistry. Sertoli cells of all species expressed NLRP3, and the expression preceded puberty. In addition, peritubular cells of the adult human testes expressed NLRP3. NLRP3 and associated genes (PYCARD, CASP1, IL1B) were also found in isolated human testicular peritubular cells and the mouse Sertoli cell line TM4. Male infertility due to impairments of spermatogenesis may be related to sterile inflammatory events. We observed that the expression of NLRP3 was altered in the testes of patients suffering from mixed atrophy syndrome, in which tubules with impairments of spermatogenesis showed prominent NLRP3 staining. In order to explore a possible role of NLRP3 in male infertility, associated with sterile testicular inflammation, we studied a mouse model of male infertility. These human aromatase-expressing transgenic mice (AROM+) develop testicular inflammation and impaired spermatogenesis during aging, and the present data show that this is associated with strikingly elevated Nlrp3 expression in the testes compared to WT controls. Interference by aromatase inhibitor treatment significantly reduced increased Nlrp3 levels. Thus, throughout species NLRP3 is expressed by somatic cells of the testis, which are involved in testicular immune surveillance. We conclude that NLRP3 may be a novel player in testicular immune regulation.


Andrologia ◽  
2018 ◽  
Vol 50 (11) ◽  
pp. e13055 ◽  
Author(s):  
Artur Mayerhofer ◽  
Lena Walenta ◽  
Christine Mayer ◽  
Katja Eubler ◽  
Harald Welter

2014 ◽  
Vol 13 (3) ◽  
pp. 1259-1269 ◽  
Author(s):  
Florian Flenkenthaler ◽  
Stefanie Windschüttl ◽  
Thomas Fröhlich ◽  
J. Ullrich Schwarzer ◽  
Artur Mayerhofer ◽  
...  

Endocrinology ◽  
1988 ◽  
Vol 122 (6) ◽  
pp. 2604-2612 ◽  
Author(s):  
M. AILENBERG ◽  
P. S. TUNG ◽  
M. PELLETIER ◽  
I. B. FRITZ

Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Nina Schmid ◽  
Annika Missel ◽  
Stoyan Petkov ◽  
Jan B Stöckl ◽  
Florian Flenkenthaler ◽  
...  

Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.


1988 ◽  
Vol 89 (2) ◽  
pp. 175-188
Author(s):  
H. Ueda ◽  
L.L. Tres ◽  
A.L. Kierszenbaum

A cocultivation chamber and two types of permeable substrates have been used to study: (1) the culture patterns of rat Sertoli and peritubular cells, and Sertoli cells cocultured with spermatogenic cells or peritubular cells; and (2) the polarized secretion of Sertoli cell-specific proteins transferrin, S70 and S45-S35 heterodimeric protein. Substrates included a nylon mesh (with openings of 100 micron) coated with extracellular matrix (ECM) material and an uncoated microporous filter (with pores of 0.45 micron). Sertoli cells cultured on ECM-coated nylon mesh organized a continuous sheet of multilayered epithelial cells essentially devoid of spermatogenic cells while peritubular cells formed a layer of squamous cells. Sertoli cells cultured on uncoated microporous substrate formed a continuous sheet of cuboidal epithelial cells with numerous basal cytoplasmic processes projecting into the substrate and abundant apically located spermatogenic cells, while peritubular cells organized one or two layers of loose squamous cells. [35S]methionine-labelled secretory proteins resolved by two-dimensional polyacrylamide gel electrophoresis and autoradiography displayed cell-specific patterns that were slightly influenced by the type of substrate. Sertoli cells cocultured with peritubular cells on uncoated microporous substrate under conditions that enabled separation of apical and basal surfaces, secreted proteins in a polarized fashion. While transferrin was released bidirectionally, S45-S35 heterodimeric protein was released apically. S70 was detected in both apical and basal compartments. We conclude from these studies that: (1) the number of spermatogenic cells decreases when Sertoli-spermatogenic cell cocultures are prepared on ECM-coated nylon substrate; and (2) Sertoli cells in coculture with spermatogenic or peritubular cells on uncoated microporous substrate, organize continuous sheets displaying polarized protein secretion.


2010 ◽  
Vol 22 (3) ◽  
pp. 523 ◽  
Author(s):  
Yanfei Yang ◽  
Ali Honaramooz

The effects of medium and hypothermic temperatures on testis cells were investigated to develop a strategy for their short-term preservation. Testes from 1-week-old piglets were enzymatically dissociated for cell isolation. In Experiment 1, testis cells were stored at either room (RT) or refrigeration (RG) temperature for 6 days in one of 13 different media. Live cell recovery was assayed daily using trypan blue exclusion. In Experiment 2, three media at RG were selected for immunocytochemical and in vitro culture studies. Live cell recovery was also assayed daily for 6 days using both trypan blue exclusion and a fluorochrome assay kit. For all media tested, significantly or numerically more live cells were maintained at RG than RT. On preservation Day 3 at RG (cell isolation day as Day 0), 20% FBS-Leibovitz resulted in the highest live cell recovery (89.5 ± 1.7%) and DPBS in the lowest (60.3 ± 1.9%). On Day 6 at RG, 20% FBS- Leibovitz also resulted in the best preservation efficiency with 80.9 ± 1.8% of Day 0 live cells recovered. There was no difference in live cell recovery detected by the two viability assays. After preservation, the proportion of gonocytes did not change, whereas that of Sertoli and peritubular cells increased and decreased, respectively. After 6 days of hypothermic preservation, testis cells showed similar culture potential to fresh cells. These results show that testis cells can be preserved for 6 days under hypothermic conditions with a live cell recovery of more than 80% and after-storage viability of 88%.


1994 ◽  
Vol 140 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Lahcen Bichoualne ◽  
B�n�dicte Thi�bot ◽  
Monique Langris ◽  
Pierre Barbey ◽  
Hamid Oulhaj ◽  
...  
Keyword(s):  

2020 ◽  
Vol 84 (3) ◽  
Author(s):  
Emily R. Bryan ◽  
Jay Kim ◽  
Kenneth W. Beagley ◽  
Alison J. Carey

2009 ◽  
Vol 72 (8) ◽  
pp. 620-628 ◽  
Author(s):  
Vanesa Anabella Guazzone ◽  
Patricia Jacobo ◽  
María Susana Theas ◽  
Livia Lustig

Sign in / Sign up

Export Citation Format

Share Document