Membrane associated proteoglycans in rat testicular peritubular cells

1994 ◽  
Vol 140 (1) ◽  
pp. 37-48 ◽  
Author(s):  
Lahcen Bichoualne ◽  
B�n�dicte Thi�bot ◽  
Monique Langris ◽  
Pierre Barbey ◽  
Hamid Oulhaj ◽  
...  
Keyword(s):  
2014 ◽  
Vol 13 (3) ◽  
pp. 1259-1269 ◽  
Author(s):  
Florian Flenkenthaler ◽  
Stefanie Windschüttl ◽  
Thomas Fröhlich ◽  
J. Ullrich Schwarzer ◽  
Artur Mayerhofer ◽  
...  

Endocrinology ◽  
1988 ◽  
Vol 122 (6) ◽  
pp. 2604-2612 ◽  
Author(s):  
M. AILENBERG ◽  
P. S. TUNG ◽  
M. PELLETIER ◽  
I. B. FRITZ

Reproduction ◽  
2020 ◽  
Vol 160 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Nina Schmid ◽  
Annika Missel ◽  
Stoyan Petkov ◽  
Jan B Stöckl ◽  
Florian Flenkenthaler ◽  
...  

Testicular peritubular cells (TPCs) are smooth muscle-like cells, which form a compartment surrounding the seminiferous tubules. Previous studies employing isolated human testicular peritubular cells (HTPCs) indicated that their roles in the testis go beyond sperm transport and include paracrine and immunological contributions. Peritubular cells from a non-human primate (MKTPCs), the common marmoset monkey, Callithrix jacchus, share a high degree of homology with HTPCs. However, like their human counterparts these cells age in vitro and replicative senescence limits in-depth functional or mechanistic studies. Therefore, a stable cellular model was established. MKTPCs of a young adult animal were immortalized by piggyBac transposition of human telomerase (hTERT), that is, without the expression of viral oncogenes. Immortalized MKTPCs (iMKTPCs) grew without discernable changes for more than 50 passages. An initial characterization revealed typical genes expressed by peritubular cells (androgen receptor (AR), smooth-muscle actin (ACTA2), calponin (CNN1)). A proteome analysis of the primary MKTPCs and the derived immortalized cell line confirmed that the cells almost completely retained their phenotype. To test whether they respond in a similar way as HTPCs, iMKTPCs were challenged with forskolin (FSK) and ATP. As HTPCs, they showed increased expression level of the StAR protein (StAR) after FSK stimulation, indicating steroidogenic capacity. ATP increased the expression of pro-inflammatory factors (e.g. IL1B; CCL7), as it is the case in HTPCs. Finally, we confirmed that iMKTPCs can efficiently be transfected. Therefore, they represent a highly relevant translational model, which allows mechanistic studies for further exploration of the roles of testicular peritubular cells.


1988 ◽  
Vol 89 (2) ◽  
pp. 175-188
Author(s):  
H. Ueda ◽  
L.L. Tres ◽  
A.L. Kierszenbaum

A cocultivation chamber and two types of permeable substrates have been used to study: (1) the culture patterns of rat Sertoli and peritubular cells, and Sertoli cells cocultured with spermatogenic cells or peritubular cells; and (2) the polarized secretion of Sertoli cell-specific proteins transferrin, S70 and S45-S35 heterodimeric protein. Substrates included a nylon mesh (with openings of 100 micron) coated with extracellular matrix (ECM) material and an uncoated microporous filter (with pores of 0.45 micron). Sertoli cells cultured on ECM-coated nylon mesh organized a continuous sheet of multilayered epithelial cells essentially devoid of spermatogenic cells while peritubular cells formed a layer of squamous cells. Sertoli cells cultured on uncoated microporous substrate formed a continuous sheet of cuboidal epithelial cells with numerous basal cytoplasmic processes projecting into the substrate and abundant apically located spermatogenic cells, while peritubular cells organized one or two layers of loose squamous cells. [35S]methionine-labelled secretory proteins resolved by two-dimensional polyacrylamide gel electrophoresis and autoradiography displayed cell-specific patterns that were slightly influenced by the type of substrate. Sertoli cells cocultured with peritubular cells on uncoated microporous substrate under conditions that enabled separation of apical and basal surfaces, secreted proteins in a polarized fashion. While transferrin was released bidirectionally, S45-S35 heterodimeric protein was released apically. S70 was detected in both apical and basal compartments. We conclude from these studies that: (1) the number of spermatogenic cells decreases when Sertoli-spermatogenic cell cocultures are prepared on ECM-coated nylon substrate; and (2) Sertoli cells in coculture with spermatogenic or peritubular cells on uncoated microporous substrate, organize continuous sheets displaying polarized protein secretion.


2010 ◽  
Vol 22 (3) ◽  
pp. 523 ◽  
Author(s):  
Yanfei Yang ◽  
Ali Honaramooz

The effects of medium and hypothermic temperatures on testis cells were investigated to develop a strategy for their short-term preservation. Testes from 1-week-old piglets were enzymatically dissociated for cell isolation. In Experiment 1, testis cells were stored at either room (RT) or refrigeration (RG) temperature for 6 days in one of 13 different media. Live cell recovery was assayed daily using trypan blue exclusion. In Experiment 2, three media at RG were selected for immunocytochemical and in vitro culture studies. Live cell recovery was also assayed daily for 6 days using both trypan blue exclusion and a fluorochrome assay kit. For all media tested, significantly or numerically more live cells were maintained at RG than RT. On preservation Day 3 at RG (cell isolation day as Day 0), 20% FBS-Leibovitz resulted in the highest live cell recovery (89.5 ± 1.7%) and DPBS in the lowest (60.3 ± 1.9%). On Day 6 at RG, 20% FBS- Leibovitz also resulted in the best preservation efficiency with 80.9 ± 1.8% of Day 0 live cells recovered. There was no difference in live cell recovery detected by the two viability assays. After preservation, the proportion of gonocytes did not change, whereas that of Sertoli and peritubular cells increased and decreased, respectively. After 6 days of hypothermic preservation, testis cells showed similar culture potential to fresh cells. These results show that testis cells can be preserved for 6 days under hypothermic conditions with a live cell recovery of more than 80% and after-storage viability of 88%.


Andrology ◽  
2018 ◽  
Vol 6 (5) ◽  
pp. 756-765 ◽  
Author(s):  
C. Mayer ◽  
M. Adam ◽  
L. Walenta ◽  
N. Schmid ◽  
H. Heikelä ◽  
...  

1987 ◽  
Vol 8 (3) ◽  
pp. 155-161 ◽  
Author(s):  
ROBERT E. CHAPIN ◽  
JERRY L. PHELPS ◽  
BRUCE E. MILLER ◽  
TIM J. B. GRAY

2020 ◽  
Vol 21 (21) ◽  
pp. 8143
Author(s):  
Alaa Sawaied ◽  
Eitan Lunenfeld ◽  
Mahmoud Huleihel

Spermatogenesis is the process of spermatogonial stem cell (SSC) proliferation and differentiation to generate sperm. This process is regulated by cell–cell interactions between Sertoli cells and developing SSCs by autocrine/paracrine and endocrine factors. It is also affected by cells in the interstitial compartment, such as Leydig cells and peritubular cells. Here, we demonstrate, for the first time, the presence of interleukin-34 (IL-34) in Leydig, Sertoli, and peritubular cells and in the premeiotic, meiotic, and postmeiotic cells. Its receptor, colony-stimulating factor-1 (CSF-1), has already been demonstrated in Leydig, Sertoli, premeiotic, and meiotic cells. IL-34 was detected in testicular homogenates and Sertoli cell-conditioned media, and was affected by mouse age. We showed that the addition of IL-34 in vitro to isolated cells from the seminiferous tubules of 7-day-old mice, using the methylcellulose culture system (MCS), increased the percentages and expression of the premeiotic cells (VASA), the meiotic cells (BOULE), and the meiotic/postmeiotic cells (ACROSIN) after four weeks of culture, when examined by immunofluorescence staining (IF) and qPCR analysis. It is possible to suggest that IL-34 is a novel paracrine/autocrine factor involved in the development of spermatogenesis. This factor may be used in future therapeutic strategies for the treatment of male infertility.


1991 ◽  
Vol 279 (1) ◽  
pp. 75-80 ◽  
Author(s):  
M Ailenberg ◽  
W G Stetler-Stevenson ◽  
I B Fritz

Testicular peritubular myoid cells, which have properties similar to those of vascular smooth-muscle cells, secrete a variety of metalloproteinases when maintained in culture in a chemically defined medium. The predominant metalloproteinases secreted were identified as latent type IV procollagenases having molecular masses of 72 kDa and 75 kDa, as detected in Western immunoblots with specific antibodies against type IV procollagenase. When peritubular cells were stimulated by dibutyryl cyclic AMP, forskolin or cholera toxin, they secreted increased amounts of type IV procollagenase. However, little if any of the active type IV collagenase, having a lower molecular mass of 66 kDa, could be detected under these conditions. Addition of low concentrations of cytochalasin D to peritubular cells in monoculture resulted in conversion of the latent type IV collagenase into its active form, assessed with antibody-specificity studies and by the appearance of the 66 kDa protein. In contrast, Sertoli cells in culture did not manifest an increased conversion of type IV procollagenase into type IV collagenase in the presence of cytochalasin D, even though cytochalasin D addition invariably resulted in a disruption of the microfilament assembly in each of these gonadal somatic cell populations. When peritubular cells were co-cultured with Sertoli cells, addition of cytochalasin D no longer resulted in formation of increased amounts of the active form of type IV collagenase. Sertoli cells and peritubular cells each secreted a tissue inhibitor of metalloproteinase type 2, detected with a specific antibody in a Western immunoblot to have a molecular mass of 21 kDa. We conclude that cytochalasin D acts on mesenchymal-type peritubular cells, but not on epithelial-type Sertoli cells, to enhance the conversion of latent type IV procollagenase into active type IV collagenase. This conversion of type IV procollagenase into type IV collagenase by peritubular cells was inhibited by factor(s) secreted by Sertoli cells. Interactions between Sertoli cells and peritubular cells are postulated to modulate net proteinase activities in discrete regions of the testis.


Sign in / Sign up

Export Citation Format

Share Document