scholarly journals Structural determinants of the catalytic mechanism of Plasmodium CCT, a key enzyme of malaria lipid biosynthesis

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ewelina Guca ◽  
Gergely N. Nagy ◽  
Fanni Hajdú ◽  
Lívia Marton ◽  
Richard Izrael ◽  
...  
2016 ◽  
Vol 72 (4) ◽  
pp. 536-550 ◽  
Author(s):  
Jakub Barciszewski ◽  
Janusz Wisniewski ◽  
Robert Kolodziejczyk ◽  
Mariusz Jaskolski ◽  
Dariusz Rakus ◽  
...  

Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and is a key enzyme of gluconeogenesis and glyconeogenesis and, more generally, of the control of energy metabolism and glucose homeostasis. Vertebrates, and notablyHomo sapiens, express two FBPase isoforms. The liver isozyme is expressed mainly in gluconeogenic organs, where it functions as a regulator of glucose synthesis. The muscle isoform is expressed in all cells, and recent studies have demonstrated that its role goes far beyond the enzymatic function, as it can interact with various nuclear and mitochondrial proteins. Even in its enzymatic function, the muscle enzyme is different from the liver isoform, as it is 100-fold more susceptible to allosteric inhibition by AMP and this effect can be abrogated by complex formation with aldolase. All FBPases are homotetramers composed of two intimate dimers: the upper dimer and the lower dimer. They oscillate between two conformational states: the inactive T form when in complex with AMP, and the active R form. Parenthetically, it is noted that bacterial FBPases behave somewhat differently, and in the absence of allosteric activators exist in a tetramer–dimer equilibrium even at relatively high concentrations. [Hineset al.(2007),J. Biol. Chem.282, 11696–11704]. The T-to-R transition is correlated with the conformation of the key loop L2, which in the T form becomes `disengaged' and unable to participate in the catalytic mechanism. The T states of both isoforms are very similar, with a small twist of the upper dimer relative to the lower dimer. It is shown that at variance with the well studied R form of the liver enzyme, which is flat, the R form of the muscle enzyme is diametrically different, with a perpendicular orientation of the upper and lower dimers. The crystal structure of the muscle-isozyme R form shows that in this arrangement of the tetramer completely new protein surfaces are exposed that are most likely targets for the interactions with various cellular and enzymatic partners. The cruciform R structure is stabilized by a novel `leucine lock', which prevents the key residue, Asp187, from locking loop L2 in the disengaged conformation. In addition, the crystal structures of muscle FBPase in the T conformation with and without AMP strongly suggest that the T-to-R transition is a discrete jump rather than a shift of an equilibrium smooth transition through multiple intermediate states. Finally, using snapshots from three crystal structures of human muscle FBPase, it is conclusively demonstrated that the AMP-binding event is correlated with a β→α transition at the N-terminus of the protein and with the formation of a new helical structure.


1997 ◽  
Vol 322 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Mireille MOUTIEZ ◽  
Eric QUÉMÉNEUR ◽  
Christian SERGHERAERT ◽  
Valérie LUCAS ◽  
André TARTAR ◽  
...  

Trypanothione:glutathione disulphide thioltransferase of Trypanosoma cruzi (p52) is a key enzyme in the regulation of the intracellular thiolŐdisulphide redox balance by reducing glutathione disulphide. Here we show that p52, like other disulphide oxidoreductases possessing the CXXC active site motif, catalyses the reduction of low-molecular-mass disulphides (hydroxyethyldisulphide) as well as protein disulphides (insulin). However, p52 seems to be a poor oxidase under physiological conditions as evidenced by its very low rate for oxidative renaturation of reduced ribonuclease A. Like thioltransferase and protein disulphide isomerase, p52 was found to possess a glutathione-dependent dehydroascorbate reductase activity. The kinetic parameters were in the same range as those determined for mammalian dehydroascorbate reductases. A catalytic mechanism taking into account both trypanothione- and glutathione-dependent reduction reactions was proposed. This newly characterized enzyme is specific for the parasite and provides a new target for specific chemotherapy.


Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1940
Author(s):  
Artem Stetsenko ◽  
Rajkumar Singh ◽  
Michael Jaehme ◽  
Albert Guskov ◽  
Dirk Jan Slotboom

NadR is a bifunctional enzyme that converts nicotinamide riboside (NR) into nicotinamide mononucleotide (NMN), which is then converted into nicotinamide adenine dinucleotide (NAD). Although a crystal structure of the enzyme from the Gram-negative bacterium Haemophilus influenzae is known, structural understanding of its catalytic mechanism remains unclear. Here, we purified the NadR enzyme from Lactococcus lactis and established an assay to determine the combined activity of this bifunctional enzyme. The conversion of NR into NAD showed hyperbolic dependence on the NR concentration, but sigmoidal dependence on the ATP concentration. The apparent cooperativity for ATP may be explained because both reactions catalyzed by the bifunctional enzyme (phosphorylation of NR and adenylation of NMN) require ATP. The conversion of NMN into NAD followed simple Michaelis-Menten kinetics for NMN, but again with the sigmoidal dependence on the ATP concentration. In this case, the apparent cooperativity is unexpected since only a single ATP is used in the NMN adenylyltransferase catalyzed reaction. To determine the possible structural determinants of such cooperativity, we solved the crystal structure of NadR from L. lactis (NadRLl). Co-crystallization with NAD, NR, NMN, ATP, and AMP-PNP revealed a ‘sink’ for adenine nucleotides in a location between two domains. This sink could be a regulatory site, or it may facilitate the channeling of substrates between the two domains.


2021 ◽  
Author(s):  
Ana Ebrecht ◽  
Christoffel Badenhorst ◽  
Randy Read ◽  
Diederik Opperman ◽  
Alberdina van Dijk

Abstract Glycine N-acyltransferase (GLYAT; EC 2.3.1.13) is a key enzyme in mammalian homeostasis that has been linked to several pathologies in humans, including cancer. Here we report the first crystal structure of a member of the GLYAT family, and a detailed interpretation of its structure and enzymatic mechanism. This work will aid further studies on GLYAT and its involvement in metabolic diseases and cancer.


1999 ◽  
Vol 343 (3) ◽  
pp. 551-555 ◽  
Author(s):  
Karen J. CHAVE ◽  
John GALIVAN ◽  
Thomas J. RYAN

γ-Glutamyl hydrolase (GH), which hydrolyses the γ-glutamyl conjugates of folic acid, is a key enzyme in the maintenance of cellular folylpolyglutamate concentrations. The catalytic mechanism of GH is not known. Consistent with earlier reports that GH is sulphydryl-sensitive, we found that recombinant human GH is inhibited by iodoacetic acid, suggesting that at least one cysteine is important for activity [Rhee, Lindau-Shepard, Chave, Galivan and Ryan (1998) Mol. Pharmacol. 53, 1040-1046]. Using site-directed mutagenesis, the cDNA for human GH was altered to encode four different proteins each with one of four cysteine residues changed to alanine. Three of the mutant proteins had activities similar to wild-type GH and were inhibited by iodoacetic acid, whereas the C110A mutant had no activity. Cys-110 is conserved among the human, rat and mouse GH amino acid sequences. The wild-type protein and all four mutants had similar intrinsic fluorescence spectra, indicating no major structural changes had been introduced. These results indicate that Cys-110 is essential for enzyme activity and suggest that GH is a cysteine peptidase. These studies represent the first identification of the essential Cys residue in this enzyme and provide the beginning of a framework to determine the catalytic mechanism, important in defining GH as a therapeutic target.


2020 ◽  
Author(s):  
Chun-Yang Li ◽  
Xiu-Juan Wang ◽  
Xiu-Lan Chen ◽  
Qi Sheng ◽  
Shan Zhang ◽  
...  

AbstractDimethylsulfoniopropionate (DMSP) is an abundant and ubiquitous organosulfur molecule and plays important roles in the global sulfur cycle. Cleavage of DMSP produces volatile dimethyl sulfide (DMS), which has impacts on the global climate. Multiple pathways for DMSP catabolism have been identified. Here we identified yet another novel pathway, the ATP DMSP lysis pathway. The key enzyme, AcoD, is an ATP-dependent DMSP lyase. AcoD belongs to the acyl-CoA synthetase superfamily, which is totally different from other DMSP lyases, showing a new evolution route. AcoD catalyses the conversion of DMSP to DMS by a two-step reaction: the ligation of DMSP with CoA to form the intermediate DMSP-CoA, which is then cleaved to DMS and acryloyl-CoA. The novel catalytic mechanism was elucidated by structural and biochemical analyses. AcoD is widely distributed in many bacterial lineages including Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria and Firmicutes, revealing this new pathway plays important roles in global DMSP/DMS cycles.


2013 ◽  
Vol 1830 (10) ◽  
pp. 4513-4523 ◽  
Author(s):  
David Delvaux ◽  
Frédéric Kerff ◽  
Mamidanna R.V.S. Murty ◽  
Bernard Lakaye ◽  
Jan Czerniecki ◽  
...  

aBIOTECH ◽  
2021 ◽  
Author(s):  
Jing-Quan Huang ◽  
Xin Fang

AbstractAmorpha-4,11-diene synthase (ADS) catalyzes the first committed step in the artemisinin biosynthetic pathway, which is the first catalytic reaction enzymatically and genetically characterized in artemisinin biosynthesis. The advent of ADS in Artemisia annua is considered crucial for the emergence of the specialized artemisinin biosynthetic pathway in the species. Microbial production of amorpha-4,11-diene is a breakthrough in metabolic engineering and synthetic biology. Recently, numerous new techniques have been used in ADS engineering; for example, assessing the substrate promiscuity of ADS to chemoenzymatically produce artemisinin. In this review, we discuss the discovery and catalytic mechanism of ADS, its application in metabolic engineering and synthetic biology, as well as the role of sesquiterpene synthases in the evolutionary origin of artemisinin.


Sign in / Sign up

Export Citation Format

Share Document