scholarly journals Site-directed mutagenesis establishes cysteine-110 as essential for enzyme activity in human γ-glutamyl hydrolase

1999 ◽  
Vol 343 (3) ◽  
pp. 551-555 ◽  
Author(s):  
Karen J. CHAVE ◽  
John GALIVAN ◽  
Thomas J. RYAN

γ-Glutamyl hydrolase (GH), which hydrolyses the γ-glutamyl conjugates of folic acid, is a key enzyme in the maintenance of cellular folylpolyglutamate concentrations. The catalytic mechanism of GH is not known. Consistent with earlier reports that GH is sulphydryl-sensitive, we found that recombinant human GH is inhibited by iodoacetic acid, suggesting that at least one cysteine is important for activity [Rhee, Lindau-Shepard, Chave, Galivan and Ryan (1998) Mol. Pharmacol. 53, 1040-1046]. Using site-directed mutagenesis, the cDNA for human GH was altered to encode four different proteins each with one of four cysteine residues changed to alanine. Three of the mutant proteins had activities similar to wild-type GH and were inhibited by iodoacetic acid, whereas the C110A mutant had no activity. Cys-110 is conserved among the human, rat and mouse GH amino acid sequences. The wild-type protein and all four mutants had similar intrinsic fluorescence spectra, indicating no major structural changes had been introduced. These results indicate that Cys-110 is essential for enzyme activity and suggest that GH is a cysteine peptidase. These studies represent the first identification of the essential Cys residue in this enzyme and provide the beginning of a framework to determine the catalytic mechanism, important in defining GH as a therapeutic target.

1994 ◽  
Vol 303 (2) ◽  
pp. 357-362 ◽  
Author(s):  
M P G van der Linden ◽  
L de Haan ◽  
O Dideberg ◽  
W Keck

Alignment of the amino acid sequence of penicillin-binding protein 5 (PBP5) with the sequences of other members of the family of active-site-serine penicillin-interacting enzymes predicted the residues playing a role in the catalytic mechanism of PBP5. Apart from the active-site (Ser44), Lys47, Ser110-Gly-Asn, Asp175 and Lys213-Thr-Gly were identified as the residues making up the conserved boxes of this protein family. To determine the role of these residues, they were replaced using site-directed mutagenesis. The mutant proteins were assayed for their penicillin-binding capacity and DD-carboxypeptidase activity. The Ser44Cys and the Ser44Gly mutants showed a complete loss of both penicillin-binding capacity and DD-carboxypeptidase activity. The Lys47Arg mutant also lost its DD-carboxypeptidase activity but was able to bind and hydrolyse penicillin, albeit at a considerably reduced rate. Mutants in the Ser110-Gly-Asn fingerprint were affected in both acylation and deacylation upon reaction with penicillin and lost their DD-carboxypeptidase activity with the exception of Asn112Ser and Asn112Thr. The Asp175Asn mutant showed wild-type penicillin-binding but a complete loss of DD-carboxypeptidase activity. Mutants of Lys213 lost both penicillin-binding and DD-carboxypeptidase activity except for Lys213His, which still bound penicillin with a k+2/K' of 0.2% of the wild-type value. Mutation of His216 and Thr217 also had a strong effect on DD-carboxypeptidase activity. Thr217Ser and Thr217Ala showed augmented hydrolysis rates for the penicillin acyl-enzyme. This study reveals the residues in the conserved fingerprints to be very important for both DD-carboxypeptidase activity and penicillin-binding, and confirms them to play crucial roles in catalysis.


2002 ◽  
Vol 365 (1) ◽  
pp. 303-309 ◽  
Author(s):  
Wynand B.L. ALKEMA ◽  
Antoon K. PRINS ◽  
Erik de VRIES ◽  
Dick B. JANSSEN

The active site of penicillin acylase of Escherichia coli contains two conserved arginine residues. The function of these arginines, αArg145 and βArg263, was studied by site-directed mutagenesis and kinetic analysis of the mutant enzymes. The mutants αArg145→Leu (αArg145Leu), αArg145Cys and αArg145Lys were normally processed and exported to the periplasm, whereas expression of the mutants βArg263Leu, βArg263Asn and βArg263Lys yielded large amounts of precursor protein in the periplasm, indicating that βArg263 is crucial for efficient processing of the enzyme. Either modification of both arginine residues by 2,3-butanedione or replacement by site-directed mutagenesis yielded enzymes with a decreased specificity (kcat/Km) for 2-nitro-5-[(phenylacetyl)amino]benzoic acid, indicating that both residues are important in catalysis. Compared with the wild type, the αArg145 mutants exhibited a 3–6-fold-increased preference for 6-aminopenicillanic acid as the deacylating nucleophile compared with water. Analysis of the steady-state parameters of these mutants for the hydrolysis of penicillin G and phenylacetamide indicated that destabilization of the Michaelis—Menten complex accounts for the improved activity with β-lactam substrates. Analysis of pH—activity profiles of wild-type enzyme and the βArg263Lys mutant showed that βArg263 has to be positively charged for catalysis, but is not involved in substrate binding. The results provide an insight into the catalytic mechanism of penicillin acylase, in which αArg145 is involved in binding of β-lactam substrates and βArg263 is important both for stabilizing the transition state in the reaction and for correct processing of the precursor protein.


2018 ◽  
Author(s):  
Qiong Guo ◽  
Shanhui Liao ◽  
Sebastian Kwiatkowski ◽  
Weronika Tomaka ◽  
Huijuan Yu ◽  
...  

SETD3 is a member of SET (Su(var)3-9, Enhancer of zeste, and Trithorax) domain protein superfamily and plays important roles in hypoxic pulmonary hypertension, muscle differentiation, and carcinogenesis. Recently, we have identified SETD3 as the actin-specific methyltransferase that methylates the N3 of His73 on β-actin. Here we present two structures of S-adenosyl-L-homocysteine-bound SETD3 in complex with either an unmodified β-actin peptide or its His-methylated variant. Structural analyses supported by the site-directed mutagenesis experiments and the enzyme activity assays indicated that the recognition and methylation of β-actin by SETD3 is highly sequence specific, and both SETD3 and β-actin adopt pronounce conformational changes upon binding to each other. In conclusion, the data show for the first time a catalytic mechanism of SETD3-mediated histidine methylation in β-actin, which not only throws light on protein histidine methylation phenomenon, but also facilitates the design of small molecule inhibitors of SETD3.


1995 ◽  
Vol 309 (1) ◽  
pp. 341-346 ◽  
Author(s):  
M H Rider ◽  
K M Crepin ◽  
M De Cloedt ◽  
L Bertrand ◽  
D Vertommen ◽  
...  

The roles of Arg-104 and Arg-225 located in the 2-kinase domain of the bifunctional enzyme 6-phosphofructo-2-kinase (PFK-2)/fructose-2,6-bisphosphatase (FBPase-2) have been studied by site-directed mutagenesis. In recombinant rat liver PFK-2/FBPase-2, mutation of Arg-225 to Ser increased the Km of PFK-2 for fructose-6-phosphate (Fru-6-P) 7-fold at pH 6 and decreased PFK-2 activity at suboptimal substrate concentrations between pH 6 and 9.5. The mutation had no effect on the Vmax of PFK-2 or on the Km of PFK-2 for MgATP. The mutation also increased the Vmax. of FBPase-2 4-fold without changing the Km for Fru-2,6-P2 or IC50 of Fru-6-P. These findings are in agreement with a previous study [Rider and Hue (1992) Eur. J. Biochem. 207, 967-972] on the protection by Fru-6-P of the labelling of Arg-225 by phenylglyoxal, and suggest that Arg-225 participates in Fru-6-P binding. In recombinant rat muscle PFK-2/FBPase-2, mutation of Arg-104 to Ser increased the Km for Fru-6-P 60-fold, increased the IC50 of citrate, increased the Vmax. 1.5-3-fold at pH 8.5 and altered the pH profile of PFK-2 activity. It did not affect the Km of PFK-2 for MgATP. The mutation also decreased the Vmax. of FBPase-2 3-fold, increased the Km for Fru-2,6-P2 70-fold and increased the IC50 of Fru-6-P at least 300-fold. Although the dimeric structure was maintained in the mutant, its PFK-2 activity was more sensitive towards inactivation by guanidinium chloride than the wild-type enzyme activity. The findings indicate that Arg-104 is involved in Fru-6-P binding in the PFK-2 domain and that it might also bind citrate. Structural changes resulting from the mutation might be responsible for the changes in kinetic properties of FBPase-2.


2011 ◽  
Vol 77 (20) ◽  
pp. 7316-7320 ◽  
Author(s):  
Jin-Geun Choi ◽  
Yo-Han Ju ◽  
Soo-Jin Yeom ◽  
Deok-Kun Oh

ABSTRACTThe S213C, I33L, and I33L S213C variants ofd-psicose 3-epimerase fromAgrobacterium tumefaciens, which were obtained by random and site-directed mutagenesis, displayed increases of 2.5, 5, and 7.5°C in the temperature for maximal enzyme activity, increases of 3.3-, 7.2-, and 29.9-fold in the half-life at 50°C, and increases of 3.1, 4.3, and 7.6°C in apparent melting temperature, respectively, compared with the wild-type enzyme. Molecular modeling suggests that the improvement in thermostability in these variants may have resulted from increased putative hydrogen bonds and formation of new aromatic stacking interactions. The immobilized wild-type enzyme with and without borate maintained activity for 8 days at a conversion yield of 70% (350 g/liter psicose) and for 16 days at a conversion yield of 30% (150 g/liter psicose), respectively. After 8 or 16 days, the enzyme activity gradually decreased, and the conversion yields with and without borate were reduced to 22 and 9.6%, respectively, at 30 days. In contrast, the activities of the immobilized I33L S213C variant with and without borate did not decrease during the operation time of 30 days. These results suggest that the I33L S213C variant may be useful as an industrial producer ofd-psicose.


1993 ◽  
Vol 294 (3) ◽  
pp. 879-884 ◽  
Author(s):  
K O ◽  
J S Hill ◽  
X Wang ◽  
R McLeod ◽  
P H Pritchard

Lecithin:cholesterol acyltransferase (LCAT; phosphatidylcholine-sterol acyltransferase, EC 2.3.1.43) is a glycoprotein which is responsible for the formation of cholesteryl ester in plasma. The carbohydrate content has been estimated to be approx. 25% of the total LCAT mass, and four potential N-linked glycosylation sites have been predicted at residues 20, 84, 272 and 384 of the LCAT protein sequence. In the present study, we have examined which of these sites are utilized and how the N-glycosylation affects the secretion and function of the enzyme. Site-directed mutagenesis was performed to eliminate the glycosylation consensus sequence at each of the four potential sites, and the mutant proteins were expressed in COS cells. The amount of each mutant LCAT secreted was similar to that of the wild-type enzyme but the molecular mass was decreased by 3-4 kDa. The specific activity of each mutant LCAT was significantly different from the wild-type; however, the magnitude and direction of the change depended on the glycosylation site mutagenized. Loss of carbohydrate at position 20, 84 or 272 resulted in a decrease in the specific activity of the mutant enzymes by 18%, 82%, and 62% respectively. In contrast, the mutant protein without glycosylation at position 384 displayed a 2-fold increase in enzyme activity. In addition, a quadruple mutant was constructed such that all four potential glycosylation sites were eliminated. The amount of the unglycosylated LCAT secreted into the culture medium was less than 10% of the wild-type level and the specific activity of this enzyme was decreased to 5% of that of the wild type. The results demonstrate that all four potential N-glycosylation sites in LCAT are used and the presence of carbohydrate at each site has diverse effects on the enzyme activity.


1994 ◽  
Vol 302 (1) ◽  
pp. 291-295 ◽  
Author(s):  
A Moreau ◽  
M Roberge ◽  
C Manin ◽  
F Shareck ◽  
D Kluepfel ◽  
...  

On the basis of similarities between known xylanase sequences of the F family, three invariant acidic residues of xylanase A from Streptomyces lividans were investigated. Site-directed-mutagenesis experiments were carried out in Escherichia coli after engineering the xylanase A gene to allow its expression. Replacement of Glu-128 or Glu-236 by their isosteric form (Gln) completely abolished enzyme activity with xylan and p-nitrophenyl beta-D-cellobioside, indicating that the two substrates are hydrolysed at the same site. These two amino acids probably represent the catalytic residues. Immunological studies, which showed that the two mutants retained the same epitopes, indicate that the lack of activity is the result of the mutation rather than misfolding of the protein. Mutation D124E did not affect the kinetic parameters with xylan as substrate, but D124N reduced the Km 16-fold and the Vmax. 14-fold when compared with the wild-type enzyme. The mutations had a more pronounced effect with p-nitrophenyl beta-D-cellobioside as the substrate. Mutation D124E increased the Km and decreased the Vmax. 5-fold each, while D124N reduced the Km 4.5-fold and the Vmax. 75-fold. The mutations had no effect on the cleavage mode of xylopentaose.


1995 ◽  
Vol 305 (1) ◽  
pp. 239-244 ◽  
Author(s):  
A G S Robertson ◽  
H G Nimmo

Cysteine-195 was previously identified as a probable active site residue in isocitrate lyase (ICL) from Escherichia coli ML308 [Nimmo, Douglas, Kleanthous, Campbell and MacKintosh (1989) Biochem. J. 261, 431-435]. This residue was replaced with serine and alanine residues by site-directed mutagenesis. The mutated genes expressed proteins with low but finite ICL activity, which co-migrated with wild-type ICL on both SDS/ and native PAGE. The mutant proteins were purified and characterized. Fluorimetry and c.d. in both the near- and the far-u.v. regions showed no differences between the mutants and wild-type ICL, indicating that the conformations of the three enzymes were very similar. ICL C195A (Cys-195-->Ala) and C195S (Cys-195-->Ser) showed 8.4-fold and 3.6-fold increases in the Km for isocitrate, while their kcat. values showed 30- and 100-fold decreases respectively. The effect of pH on the kinetic properties of the wild-type and mutant ICLs was investigated. The results showed that the response of the mutant enzymes to pH was simpler than that of the wild-type. For the mutants, ionisation of a group with a pKa of approx. 7.8 affected the Km for isocitrate and kcat.. For the wild-type enzyme, these parameters were affected by the ionization of two or more groups, one of which is presumed to by cysteine-195. The results are consistent with the view that the previously identified group with a pKa of 7.1 whose ionization affects the reaction of ICL by iodoacetate is cysteine-195 itself.


2000 ◽  
Vol 349 (2) ◽  
pp. 501-507 ◽  
Author(s):  
Hyun Min KOO ◽  
Sung-Ook CHOI ◽  
Hyun Mi KIM ◽  
Yu Sam KIM

Malonamidase (MA) E2 was previously purified and characterized from Bradyrhizobium japonicum USDA 110. The gene encoding this enzyme has been cloned, sequenced and expressed in Escherichia coli. The recombinant MAE2 was purified to homogeneity from the transformed E. coli. The biochemical properties of the recombinant enzyme are essentially identical to those from wild-type B. japonicum. A database search showed that the MAE2 protein has a high sequence similarity with the common signature sequences of the amidase family. The only exception is that the aspartic residue in these signature sequences is replaced by a glutamine residue. In order to identify amino acid residues essential for enzyme activity, a series of site-directed mutagenesis studies and steady-state kinetic experiments were performed. Gln195, Ser199, Cys207 and Lys213 of the common signature sequences were selected for site-directed mutagenesis. Among the mutants, Q195D, Q195E and S199C showed less than 0.02% of the kcat value of the wild-type enzyme, and S199A, Q195L and Q195N exhibited no detectable catalytic activities. Mutants (K213L, K213R and K213H) obtained by replacement of the only conserved basic residue, Lys213, in the signature sequences, also displayed significant reductions (approx. 380-fold) in kcat value, whereas C207A kept full activity. These results suggest that MAE2 may catalyse hydrolysis of malonamate by a novel catalytic mechanism, in which Gln195, Ser199 and Lys213 are involved.


1991 ◽  
Vol 277 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Y Takata ◽  
T Date ◽  
M Fujioka

Cys-90 of rat liver guanidinoacetate methyltransferase is a very reactive residue, and chemical modification of this residue results in a large decrease in activity [Fujioka, Konishi & Takata (1988) Biochemistry 27, 7658-7664]. To understand better the role of Cys-90 in catalysis, this residue was replaced with alanine by oligonucleotide-directed mutagenesis. The mutant is active and has kinetic constants similar to those of wild-type, indicating that Cys-90 is not involved in catalysis and substrate binding. The u.v.-absorption, fluorescence and c.d. spectra are also unchanged. Reaction of the mutant with an equimolar amount of 5,5′-dithiobis-(2-nitrobenzoic acid) or 2-nitro-5-thiocyanobenzoic acid results in an almost quantitative disulphide cross-linking between Cys-15 and Cys-21). The same treatment effects disulphide bond formation between Cys-15 and Cys-90 in wild type [Fujioka, Konishi & Takata (1988) Biochemistry 27, 7658-7664]. Since the mutant and wild-type enzymes appear to have similar secondary and tertiary structures, these results suggest that Cys-15, Cys-90 and Cys-219 of the methyltransferase occur spatially close together. The mutant cross-linked between Cys-15 and Cys-219 and the wild-type cross-linked between Cys-15 and Cys-90 show very similar spectroscopic properties. Although treatment of the mutant and wild-type enzymes with equimolar concentrations of 5,5′dithiobis-(2-nitrobenzoic acid) causes a large loss of enzyme activity in each case, kinetic analyses with the modified enzymes suggest that cross-linking of Cys-15 with Cys-90 or Cys-219 does not abolish activity and does not result in a large change in the Michaelis constants. Incubation of the mutant enzyme with excess 2-nitro-5-thiocyanobenzoic acid leads to modification of Cys-207 in addition to Cys-15 and Cys-219. Retention of considerable enzyme activity in the modified enzyme indicates that Cys-207 is also not an essential residue.


Sign in / Sign up

Export Citation Format

Share Document