scholarly journals T-to-R switch of muscle fructose-1,6-bisphosphatase involves fundamental changes of secondary and quaternary structure

2016 ◽  
Vol 72 (4) ◽  
pp. 536-550 ◽  
Author(s):  
Jakub Barciszewski ◽  
Janusz Wisniewski ◽  
Robert Kolodziejczyk ◽  
Mariusz Jaskolski ◽  
Dariusz Rakus ◽  
...  

Fructose-1,6-bisphosphatase (FBPase) catalyzes the hydrolysis of fructose 1,6-bisphosphate to fructose 6-phosphate and is a key enzyme of gluconeogenesis and glyconeogenesis and, more generally, of the control of energy metabolism and glucose homeostasis. Vertebrates, and notablyHomo sapiens, express two FBPase isoforms. The liver isozyme is expressed mainly in gluconeogenic organs, where it functions as a regulator of glucose synthesis. The muscle isoform is expressed in all cells, and recent studies have demonstrated that its role goes far beyond the enzymatic function, as it can interact with various nuclear and mitochondrial proteins. Even in its enzymatic function, the muscle enzyme is different from the liver isoform, as it is 100-fold more susceptible to allosteric inhibition by AMP and this effect can be abrogated by complex formation with aldolase. All FBPases are homotetramers composed of two intimate dimers: the upper dimer and the lower dimer. They oscillate between two conformational states: the inactive T form when in complex with AMP, and the active R form. Parenthetically, it is noted that bacterial FBPases behave somewhat differently, and in the absence of allosteric activators exist in a tetramer–dimer equilibrium even at relatively high concentrations. [Hineset al.(2007),J. Biol. Chem.282, 11696–11704]. The T-to-R transition is correlated with the conformation of the key loop L2, which in the T form becomes `disengaged' and unable to participate in the catalytic mechanism. The T states of both isoforms are very similar, with a small twist of the upper dimer relative to the lower dimer. It is shown that at variance with the well studied R form of the liver enzyme, which is flat, the R form of the muscle enzyme is diametrically different, with a perpendicular orientation of the upper and lower dimers. The crystal structure of the muscle-isozyme R form shows that in this arrangement of the tetramer completely new protein surfaces are exposed that are most likely targets for the interactions with various cellular and enzymatic partners. The cruciform R structure is stabilized by a novel `leucine lock', which prevents the key residue, Asp187, from locking loop L2 in the disengaged conformation. In addition, the crystal structures of muscle FBPase in the T conformation with and without AMP strongly suggest that the T-to-R transition is a discrete jump rather than a shift of an equilibrium smooth transition through multiple intermediate states. Finally, using snapshots from three crystal structures of human muscle FBPase, it is conclusively demonstrated that the AMP-binding event is correlated with a β→α transition at the N-terminus of the protein and with the formation of a new helical structure.

Author(s):  
Mihoko Takenoya ◽  
Seiichi Taguchi ◽  
Shunsuke Yajima

(S)-3-Hydroxybutyryl-CoA dehydrogenase (HBD) has been gaining increased attention recently as it is a key enzyme in the enantiomeric formation of (S)-3-hydroxybutyryl-CoA [(S)-3HB-CoA]. It converts acetoacetyl-CoA to (S)-3HB-CoA in the synthetic metabolic pathway. (S)-3HB-CoA is further modified to form (S)-3-hydroxybutyrate, which is a source of biodegradable polymers. During the course of a study to develop biodegradable polymers, attempts were made to determine the crystal structure of HBD from Clostridium acetobutylicum (CacHBD), and the crystal structures of both apo and NAD+-bound forms of CacHBD were determined. The crystals belonged to different space groups: P212121 and P21. However, both structures adopted a hexamer composed of three dimers in the asymmetric unit, and this oligomerization was additionally confirmed by gel-filtration column chromatography. Furthermore, to investigate the catalytic residues of CacHBD, the enzymatic activities of the wild type and of three single-amino-acid mutants were analyzed, in which the Ser, His and Asn residues that are conserved in the HBDs from C. acetobutylicum, C. butyricum and Ralstonia eutropha, as well as in the L-3-hydroxyacyl-CoA dehydrogenases from Homo sapiens and Escherichia coli, were substituted by alanines. The S117A and N188A mutants abolished the activity, while the H138A mutant showed a slightly lower K m value and a significantly lower k cat value than the wild type. Therefore, in combination with the crystal structures, it was shown that His138 is involved in catalysis and that Ser117 and Asn188 may be important for substrate recognition to place the keto group of the substrate in the correct position for reaction.


2021 ◽  
Author(s):  
Hua-Qi Wang ◽  
Shu-Bin Mou ◽  
Wen Xiao ◽  
Huan Zhou ◽  
Xu-Dong Hou ◽  
...  

The Lewis acid-catalyzed Friedel-Crafts alkylation of an aromatic ring with an alkyl halide is extensively used in organic synthesis. However, its biological counterpart was not reported until the elucidation of the cylindrocyclophane biosynthetic pathway in Cylindrospermum licheniforme ATCC 29412 by Balskus and co-workers. CylK is the key enzyme to catalyze the formation of the cylindrocyclophane scaffold through the Friedel-Crafts alkylation reactions with regioselectivity and stereospecificity. Further research demonstrates that CylK can accept other resorcinol rings and secondary alkyl halides as substrates. To date, the crystal structure of CylK has not been disclosed and the catalytic mechanism remains obscure. Herein we report the crystal structures of CylK in its apo form and its complexes with the analogues of its substrate and reaction intermediate. Combining the crystal structures, free energy simulations and the mutagenesis experiments, we proposed a concerted double-activation mechanism, which could explain the regioselectivity and stereospecificity. This work provides a foundation for engineering CylK as a biocatalyst to expand its substrate scope and applications in organic synthesis.


2018 ◽  
Vol 74 (4) ◽  
pp. 321-331
Author(s):  
Nina M. Wolf ◽  
Hiten J. Gutka ◽  
Farahnaz Movahedzadeh ◽  
Celerino Abad-Zapatero

The crystal structures of native class II fructose-1,6-bisphosphatase (FBPaseII) fromMycobacterium tuberculosisat 2.6 Å resolution and two active-site protein variants are presented. The variants were complexed with the reaction product fructose 6-phosphate (F6P). The Thr84Ala mutant is inactive, while the Thr84Ser mutant has a lower catalytic activity. The structures reveal the presence of a 222 tetramer, similar to those described for fructose-1,6/sedoheptulose-1,7-bisphosphatase fromSynechocystis(strain 6803) as well as the equivalent enzyme fromThermosynechococcus elongatus. This homotetramer corresponds to a homologous oligomer that is present but not described in the crystal structure of FBPaseII fromEscherichia coliand is probably conserved in all FBPaseIIs. The constellation of amino-acid residues in the active site of FBPaseII fromM. tuberculosis(MtFBPaseII) is conserved and is analogous to that described previously for theE. colienzyme. Moreover, the structure of the active site of the partially active (Thr84Ser) variant and the analysis of the kinetics are consistent with the previously proposed catalytic mechanism. The presence of metabolites in the crystallization medium (for example citrate and malonate) and in the corresponding crystal structures ofMtFBPaseII, combined with their observed inhibitory effect, could suggest the existence of an uncharacterized inhibition of this class of enzymes besides the allosteric inhibition by adenosine monophosphate observed for theSynechocystisenzyme. The structural and functional insights derived from the structure ofMtFBPaseII will provide critical information for the design of lead inhibitors, which will be used to validate this target for future chemical intervention.


2015 ◽  
Vol 71 (12) ◽  
pp. 2505-2512 ◽  
Author(s):  
Magdalena Schacherl ◽  
Angelika A. M. Montada ◽  
Elena Brunstein ◽  
Ulrich Baumann

The U32 family is a collection of over 2500 annotated peptidases in the MEROPS database with unknown catalytic mechanism. They mainly occur in bacteria and archaea, but a few representatives have also been identified in eukarya. Many of the U32 members have been linked to pathogenicity, such as proteins fromHelicobacterandSalmonella. The first crystal structure analysis of a U32 catalytic domain fromMethanopyrus kandleri(genemk0906) reveals a modified (βα)8TIM-barrel fold with some unique features. The connecting segment between strands β7 and β8 is extended and helix α7 is located on top of the C-terminal end of the barrel body. The protein exhibits a dimeric quaternary structure in which a zinc ion is symmetrically bound by histidine and cysteine side chains from both monomers. These residues reside in conserved sequence motifs. No typical proteolytic motifs are discernible in the three-dimensional structure, and biochemical assays failed to demonstrate proteolytic activity. A tunnel in which an acetate ion is bound is located in the C-terminal part of the β-barrel. Two hydrophobic grooves lead to a tunnel at the C-terminal end of the barrel in which an acetate ion is bound. One of the grooves binds to aStrep-Tag II of another dimer in the crystal lattice. Thus, these grooves may be binding sites for hydrophobic peptides or other ligands.


Author(s):  
Minh Thu Ma ◽  
Maria Rain Jennings ◽  
John Blazeck ◽  
Raquel L. Lieberman

Homo sapiens adenosine deaminase 1 (HsADA1; UniProt P00813) is an immunologically relevant enzyme with roles in T-cell activation and modulation of adenosine metabolism and signaling. Patients with genetic deficiency in HsADA1 suffer from severe combined immunodeficiency, and HsADA1 is a therapeutic target in hairy cell leukemias. Historically, insights into the catalytic mechanism and the structural attributes of HsADA1 have been derived from studies of its homologs from Bos taurus (BtADA) and Mus musculus (MmADA). Here, the structure of holo HsADA1 is presented, as well as biochemical characterization that confirms its high activity and shows that it is active across a broad pH range. Structurally, holo HsADA1 adopts a closed conformation distinct from the open conformation of holo BtADA. Comparison of holo HsADA1 and MmADA reveals that MmADA also adopts a closed conformation. These findings challenge previous assumptions gleaned from BtADA regarding the conformation of HsADA1 that may be relevant to its immunological interactions, particularly its ability to bind adenosine receptors. From a broader perspective, the structural analysis of HsADA1 presents a cautionary tale for reliance on homologs to make structural inferences relevant to applications such as protein engineering or drug development.


2002 ◽  
Vol 16 (3-4) ◽  
pp. 227-233 ◽  
Author(s):  
Chiara Caronna ◽  
Antonio Cupane

In this work we report the thermal behaviour of the amide I′ band of carbonmonoxy and deoxy hemoglobin in 65% v/v glycerolD8/D2O solutions and in the temperature interval 10–295 K. Following recent suggestions in the literature, we analyze the amide I′ band in terms of two components, one at about 1630 cm−1and the other at about 1650 cm−1, that are assigned to solvent‒exposed and buried α‒helical regions, respectively.For deoxy hemoglobin (in T quaternary structure) both components are narrower with respect to carbonmonoxy hemoglobin (in R quaternary structure), while the peak frequency blue shift observed, upon increasing temperature, for the component at about 1630 cm−1is smaller. The reported data provide evidence of the dependence of hemoglobin dynamic properties upon the protein quaternary structure and suggest a more compact α‒helical structure of hemoglobin in T conformation, with reduced population of low‒frequency modes involving the solvent and protein.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Jeffrey I Boucher ◽  
Joseph R Jacobowitz ◽  
Brian C Beckett ◽  
Scott Classen ◽  
Douglas L Theobald

Malate and lactate dehydrogenases (MDH and LDH) are homologous, core metabolic enzymes that share a fold and catalytic mechanism yet possess strict specificity for their substrates. In the Apicomplexa, convergent evolution of an unusual LDH from MDH produced a difference in specificity exceeding 12 orders of magnitude. The mechanisms responsible for this extraordinary functional shift are currently unknown. Using ancestral protein resurrection, we find that specificity evolved in apicomplexan LDHs by classic neofunctionalization characterized by long-range epistasis, a promiscuous intermediate, and few gain-of-function mutations of large effect. In canonical MDHs and LDHs, a single residue in the active-site loop governs substrate specificity: Arg102 in MDHs and Gln102 in LDHs. During the evolution of the apicomplexan LDH, however, specificity switched via an insertion that shifted the position and identity of this ‘specificity residue’ to Trp107f. Residues far from the active site also determine specificity, as shown by the crystal structures of three ancestral proteins bracketing the key duplication event. This work provides an unprecedented atomic-resolution view of evolutionary trajectories creating a nascent enzymatic function.


Sign in / Sign up

Export Citation Format

Share Document