scholarly journals Urinary Exosomal and cell-free DNA Detects Somatic Mutation and Copy Number Alteration in Urothelial Carcinoma of Bladder

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Dong Hyeon Lee ◽  
Hana Yoon ◽  
Sanghui Park ◽  
Jeong Seon Kim ◽  
Young-Ho Ahn ◽  
...  
2019 ◽  
Vol 66 (1) ◽  
pp. 188-198 ◽  
Author(s):  
Guangzhe Ge ◽  
Ding Peng ◽  
Bao Guan ◽  
Yuanyuan Zhou ◽  
Yanqing Gong ◽  
...  

Abstract BACKGROUND Current noninvasive assays for urothelial carcinoma (UC) lack clinical sensitivity and specificity. Given the utility of plasma cell-free DNA (cfDNA) biomarkers, the development of urinary cfDNA biomarkers may improve the diagnostic sensitivity. METHODS We assessed copy number alterations (CNAs) by shallow genome-wide sequencing of urinary cfDNA in 95 cancer-free individuals and 65 patients with UC, 58 with kidney cancer, and 45 with prostate cancer. We used a support vector machine to develop a diagnostic classifier based on CNA profiles to detect UC (UCdetector). The model was further validated in an independent cohort (52 patients). Genome sequencing data of tumor specimens from 90 upper tract urothelial cancers (UTUCs) and CNA data for 410 urothelial carcinomas of bladder (UCBs) from The Cancer Genome Atlas were used to validate the classifier. Genome sequencing data for urine sediment from 32 patients with UC were compared with cfDNA. To monitor the treatment efficacy, we collected cfDNA from 7 posttreatment patients. RESULTS Urinary cfDNA was a more sensitive alternative to urinary sediment. The UCdetector could detect UC at a median clinical sensitivity of 86.5% and specificity of 94.7%. UCdetector performed well in an independent validation data set. Notably, the CNA features selected by UCdetector were specific markers for both UTUC and UCB. Moreover, CNA changes in cfDNA were consistent with the treatment effects. Meanwhile, the same strategy could localize genitourinary cancers to tissue of origin in 70.1% of patients. CONCLUSIONS Our findings underscore the potential utility of urinary cfDNA CNA profiles as a basis for noninvasive UC detection and surveillance.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Makoto Nakabayashi ◽  
Akihiro Kawashima ◽  
Rika Yasuhara ◽  
Yosuke Hayakawa ◽  
Shingo Miyamoto ◽  
...  

PLoS ONE ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. e0232365 ◽  
Author(s):  
Michihito Tagawa ◽  
Naomi Tambo ◽  
Masaki Maezawa ◽  
Mizuki Tomihari ◽  
Ken-ichi Watanabe ◽  
...  

2021 ◽  
pp. 172460082199235
Author(s):  
Weina Zhang ◽  
Yu-min Zhang ◽  
Yuan Gao ◽  
Shengmiao Zhang ◽  
Weixin Chu ◽  
...  

Objective: CA-125 is widely used as biomarker of ovarian cancer. However, CA-125 suffers low accuracy. We developed a hybrid analytical model, the Ovarian Cancer Decision Tree (OCDT), employing a two-layer decision tree, which considers genetic alteration information from cell-free DNA along with CA-125 value to distinguish malignant tumors from benign tumors. Methods: We consider major copy number alterations at whole chromosome and chromosome-arm level as the main feature of our detection model. Fifty-eight patients diagnosed with malignant tumors, 66 with borderline tumors, and 10 with benign tumors were enrolled. Results: Genetic analysis revealed significant arm-level imbalances in most malignant tumors, especially in high-grade serous cancers in which 12 chromosome arms with significant aneuploidy ( P<0.01) were identified, including 7 arms with significant gains and 5 with significant losses. The area under receiver operating characteristic curve (AUC) was 0.8985 for copy number variations analysis, compared to 0.8751 of CA125. The OCDT was generated with a cancerous score (CScore) threshold of 5.18 for the first level, and a CA-125 value of 103.1 for the second level. Our most optimized OCDT model achieved an AUC of 0.975. Conclusions: The results suggested that genetic variations extracted from cfDNA can be combined with CA-125, and together improved the differential diagnosis of malignant from benign ovarian tumors. The model would aid in the pre-operative assessment of women with adnexal masses. Future clinical trials need to be conducted to further evaluate the value of CScore in clinical settings and search for the optimal threshold for malignancy detection.


Sign in / Sign up

Export Citation Format

Share Document