scholarly journals Repression of Mcl-1 expression by the CDC7/CDK9 inhibitor PHA-767491 overcomes bone marrow stroma-mediated drug resistance in AML

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Eimear O’ Reilly ◽  
Sukhraj Pal S. Dhami ◽  
Denis V. Baev ◽  
Csaba Ortutay ◽  
Anna Halpin-McCormick ◽  
...  
Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 262-262
Author(s):  
Sophie Rabe ◽  
Eva Schitter ◽  
Tobias Roider ◽  
Peter-Martin Bruch ◽  
Carolin Kolb ◽  
...  

Abstract Background: Signals provided by the microenvironment can modify and circumvent pathway activities that are therapeutically targeted by drugs. However, a systems-level understanding of how the microenvironment and the genetic and molecular alterations of the tumor interact with each other and contribute to drug resistance is lacking. Methods: To address this unmet need, we established an automated microscopy-based phenotyping platform that uses co-culture conditions mimicking the bone marrow environment. We cultured primary tumor cells from more than 100 leukemia patients (CLL, AML, MCL, T-PLL, HCL) with and without bone marrow stroma cell support in DMEM and 10% human serum and treated each condition with 57 drugs in 3 concentrations. After 72h of incubation, 22 000 images per patient were acquired and processed by our custom made image analysis pipeline. Our set-up allows us to increase sensitivity far beyond simple viability testing, as it reads out additional cell type specific features such as cell morphology, autophagy and cell-cell interactions. Results: Quality assessment revealed that in contrast to mono-culture conditions, assay plate edge effects can be avoided under stable stroma cell co-culture conditions. Correlation of replicated patient samples were comparable between mono- and co-cultures (R2>0.75). In the absence of their native microenvironment, primary leukemia cells undergo spontaneous apoptosis ex-vivo. Viability at culture start was always >90% and dropped to a median of 51% (viability range: 17%-90%) after 72h in mono-cultures. Among CLL samples spontaneous apoptosis was not dependent on either IGHV mutation status or any major cytogenetic risk group. Bone marrow stroma cell co-culture conditions protected tumor cells from spontaneous apoptosis (p=8.2e-6, paired t-test). Patient samples with a high degree of spontaneous apoptosis benefited most from co-culture conditions (p=7.2e-10, Pearson correlation). To model interactions of stroma cell conditions and drug-induced apoptosis we established the following linear model: Viability ~ drug-effect + culture-model + drug-effect:culture-model. While activity of some drugs was significantly altered under co-culture conditions, we could also identify drugs with similar activity in mono- and co-cultures. For instance, the activity of common chemotherapeutics (fludarabine: p=0.002 at 0.6µM, cytarabine: p=0.001 at 1.5µM, ANOVA) or bromodomain inhibitors (I-BET-762: p=5.9e-5 at 4.5µM, JQ1: p=1.5e-8 at 1.5µM, ANOVA) was significantly reduced under co-culture conditions. In contrast, PI3K inhibitors idelalisib and duvelisib had a similar activity in mono-culture and stroma co-culture conditions and might represent a starting point to overcome stroma cell mediated drug resistance. In CLL, we identified IGHV mutation status and trisomy 12 as important determinants of response to kinase inhibitors. We confirmed these findings in stroma cell co-cultures, e.g. a better activity of B-cell receptor inhibitors in trisomy 12 and IGHV unmutated CLL. A systematic comparison of ex-vivo drug response pattern in mono- and co-cultures across 171 drug conditions will be presented. Conclusion: Our results suggest that high throughput co-culture drug testing can be robustly performed and provide an unprecedented understanding of how the stroma cell microenvironment and the genetic make-up of tumor cells contribute to drug resistance and sensitivity. Figure: Over 2 million microscopy images were acquired and analysed to assess drug resistance and sensitivity in a co-culture model of primary leukemia and bone marrow stroma cells. blue= Hoechst33342, green=Calcein AM, red=lysosomal dye NIR Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4450-4450
Author(s):  
Catherine M Gavile ◽  
David Egas ◽  
Gregory H Doho ◽  
Sagar Lonial ◽  
Kelvin P Lee ◽  
...  

Multiple myeloma is a malignancy of long lived plasma cells. Like normal plasma cells, myeloma cells are dependent on the bone marrow microenvironment for survival. While the specific interactions and downstream signals mediated by the bone marrow stroma have yet to be fully characterized, drug resistance is linked to these pathways, and further understanding will uncover new therapeutic avenues for myeloma. CD28 and CD86 are best known for their role in T-cell activation; however they have recently been shown to play important roles in the generation and survival of normal long lived plasma cells. CD28 is the canonical costimulatory receptor known to activate the PI3K-Akt pathway in T-cells upon binding to CD80 or CD86 from an antigen-presenting cell. CD28 and CD86 are also expressed by normal plasma and myeloma cells, and we have previously shown that both CD28 and CD86 are necessary for myeloma cell survival. Silencing of either CD28 or CD86 results in cell death in 3 human myeloma cell lines (RPMI8226, MM.1s, and KMS18). Interestingly, in 2 cell lines, knockdown of CD86 results in higher levels of cell death than CD28. In these lines, silencing CD28 or addition of a soluble inhibitor CTLA4-Ig (Abatacept), results in an increase in CD86 expression. Taken together, these data suggest that CD28 and CD86 regulate the survival of myeloma cells through either cis or trans signals, and feedback signals from CD28 control CD86 expression. The data also suggest that signaling events result from ligation of either CD28 or CD86. To better define the nature of the survival signals emanating from CD28 and CD86, we performed RNA-Seq on myeloma cells where CD28 or CD86 expression had been silenced. For silencing of CD28 we found 1292, 1195, and 1697 transcripts that were significantly changed compared to vector control in KMS18, MM.1s and RPMI8226, and silencing CD86 results in a similar number of changes (1405, 1200 and 1866 transcripts respectively). Since CD28 and CD86 form a receptor-ligand pair, we focused on genes that were common to silencing of both. Of genes that had significant expression changes compared to vector control, we found 229, 221 and 399 transcripts that were commonly regulated by CD28 and CD86 in KMS18, MM.1s and RPMI8226 respectively. Most transcripts were either upregulated (45.4 to 57.5%) or downregulated (28.8 to 41.5%) by silencing of either CD28 or CD86. A subset of transcripts (13.1 to 14%) showed a pattern of expression similar to CD86 - silencing of CD28 and CD86 had opposite effects on expression. This subset of transcripts may represent genes that are regulated by CD86 signaling, and may explain the difference in sensitivity to CD28 vs. CD86 silencing. Curiously, in KMS18 where this difference was not observed, RNA-Seq indicates that these cells are homozygous for a CD86 SNP that is associated with increased cancer susceptibility and lower transplant rejection, and may represent a hypomorphic allele. Surprisingly, we did not observe any significant changes in either pro- or anti-apoptotic Bcl-2 genes in any cell line except for upregulation in minor transcripts of Bcl2L11 (Bim) in KMS18 cells. This change did not affect overall expression as confirmed by qRT-PCR. However, expression of several cell surface proteins associated with myeloma cell survival did change. Integrin-ß1 (ITGB1) and -ß7 (ITGB7) are surface molecules that facilitate both cell-matrix and cell-cell interactions, and have been implicated in myeloma growth, survival, and drug-resistance. Knockdown of CD28 or CD86 resulted in downregulation of ITGB7 that was confirmed by qRT-PCR. We also saw a reduction of ITGB7 at the cell surface with CD86 knockdown, but not with CD28. ITGB1 expression was reduced at the mRNA and cell surface levels with knockdown of CD86, but was induced with CD28 knockdown. Based on their patterns of expression, ITGB7 may be regulated by CD28 signaling, while ITGB1 may be downstream of CD86 signaling. These data indicate that CD28-86 signaling regulates the expression of integrins on the surface of myeloma cells. Because drug resistance has been linked to the myeloma cells’ interaction with the bone marrow stroma and its resident cells (CAM-DR), these surface molecules could be important mediators of CD28 and CD86 survival signaling. Taken together, our data indicate that targeting CD28-86 signaling is a promising therapeutic approach to CAM-DR, and may be a useful addition to current regimens against myeloma. Disclosures: Lonial: Onyx: Consultancy; Celgene: Consultancy; Millennium: Consultancy; Novartis: Consultancy; BMS: Consultancy; Sanofi: Consultancy; Onyx: Consultancy. Boise:Onyx Pharmaceuticals: Consultancy.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2378-2378
Author(s):  
Tint Lwin ◽  
Lori A. Hazlehurst ◽  
Lynn C. Moscinski ◽  
William S. Dalton ◽  
Jianguo Tao

Abstract Stromal cells are an essential component of the bone marrow microenvironment that regulate or supports tumor survival. The bone marrow stroma has long been recognized as a "sanctuary site" for lymphoma cells during traditional chemotherapy. In this study, we demonstrated that adhesion of the B-cell lymphoma cell lines SUDH-4 and 10 to bone marrow stroma inhibited mitoxantrone-induced apoptosis. This adhesion-dependent inhibition of mitoxantrone-induced apoptosis correlated with decreased activation of caspases- 8 and 9, and cleavage of caspase 3 and PARP. EMSA analysis demonstrated significantly increased NF-kB binding activity in cells adhered to stroma cells compared to lymphoma cells in suspension. This DNA binding activity could be attributed to cell adhesion-mediated proteolysis of p100 NF-kappaB2 resulted in generation of active p52, which translocates to the nucleus in complex with p65 and RelB. Furthermore, co-culture with stromal cells also induced expression of the NF-kB-regulated anti-apoptotic molecules, XIAP, cIAP1 and cIAP2. In addition, because of the knowledge that BAFF shown to be critical for maintenance of normal B cell homeostasis as well as the survival of malignant B cells, we characterized the functional significance of BAFF in BMS-mediated drug resistance and survival. BAFF was detected on BMS cell line HS-5 and BMS cells derived from lymphoma patients by flow cytometry. Concentrations of BAFF were 3- to 25-fold higher in bone marrow aspirate than in peripheral blood. Lymphoma cell adhesion to HS-5 cells significantly increased BAFF secretion evidenced by both ELISA and immunoblotting. Addition of BAFF counteracted mitoxantrone-induced apoptosis, and elicited a reduction in spontaneous apoptosis in primary lymphomas via activation of NF-kB activation. Finally neutralization of BAFF by TACI enhanced lymphoma cell response to chemotherapy and overcame cell-adhesion mediated drug resistance, suggesting that lymphoma cells utilize BAFF as survival factor. These data indicate that stromal cells prevent apoptosis of lymphoma cells by upregulation of BAFF and induction of NF-kB-regulated anti-apoptotic proteins. Bone marrow-derived BAFF plays a key role in lymphoma cell survival and drug resistance in bone marrow microenvironment.


BMC Cancer ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jahangir Abdi ◽  
Nasrin Rastgoo ◽  
Yan Chen ◽  
Guo An Chen ◽  
Hong Chang

Abstract Background Multiple myeloma (MM) cells gain protection against drugs through interaction with bone marrow stromal cells (BMSCs). This form of resistance largely accounts for resistance to therapy in MM patients which warrants further exploration to identify more potential therapeutic targets. Methods We performed miRNA/mRNA qPCR arrays and western blotting to analyze transcriptional and translational changes in MM cells co-cultured with BMSCs. Drug cytotoxicity and apoptosis in MMGFP-BMSC co-cultures were measured using fluorescence plate reader and flowcytometry, respectively. miRNA was overexpressed in MM cell lines using Lentiviral transduction, miRNA-3’UTR binding was examined using luciferase assay. Results We found that BMSCs downregulated miR-101-3p and upregulated survivin (BIRC5) in MM cells. Survivin was downregulated by miR-101-3p overexpression and found to be a direct target of miR-101-3p using 3’UTR luciferase assay. Overexpression of survivin increased viability of MM cells in the presence of anti-myeloma drugs, and miR-101-3p inhibition by anti-miR against miR-101-3p upregulated survivin. Furthermore, overexpression of miR-101-3p or silencing of survivin triggered apoptosis in MM cells and sensitized them to anti-myeloma drugs in the presence of BMSCs overcoming the stroma-induced drug resistance. Conclusions Our study demonstrates that BMSC-induced resistance to drugs is associated with survivin upregulation which is a direct target of miR-101-3p. This study also identifies miR-101-3p-survivin interaction as a druggable target involved in stroma-mediated drug resistance in MM and suggests it for developing more efficient therapeutic strategies.


Apmis ◽  
1991 ◽  
Vol 99 (1-6) ◽  
pp. 171-178 ◽  
Author(s):  
IDA LISSE ◽  
HANS HASSELBALCH ◽  
PETER JUNKER

Sign in / Sign up

Export Citation Format

Share Document