scholarly journals PKD1 Duplicated regions limit clinical Utility of Whole Exome Sequencing for Genetic Diagnosis of Autosomal Dominant Polycystic Kidney Disease

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hamad Ali ◽  
Fahd Al-Mulla ◽  
Naser Hussain ◽  
Medhat Naim ◽  
Akram M. Asbeutah ◽  
...  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Na Du ◽  
Dan Dong ◽  
Luyao Sun ◽  
Lihe Che ◽  
Xiaohua Li ◽  
...  

Abstract Background Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic kidney disorder. Half of the patients would slowly progress to end-stage renal disease. However, the potential target for ADPKD treatment is still lacking. Methods Four ADPKD patients and two healthy family members were included in this study. The peripheral blood samples were obtained and tested by the whole exome sequencing (WES). The autosomal mutations in ADPKD patients were retained as candidate sites. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and protein–protein interaction network (PPI) analyses were performed by clusterProfiler R package. A dataset containing 18 ADPKD patients and three normal samples were downloaded from the Gene Expression Omnibus (GEO) database and analyzed using the limma R package. Results A total of six mutant genes were identified based on the dominant genetic pattern and most of them had not been reported to be associated with ADPKD. Furthermore, 19 harmful genes were selected according to the harmfulness of mutation. GO and KEGG enrichment analyses showed that the processes of single-organism cellular process, response to stimulus, plasma membrane, cell periphery, and anion binding as well as cyclic adenosine monophosphate (cAMP) signaling pathway and pathways in cancer were significantly enriched. Through integrating PPI and gene expression analyses, acyl-CoA thioesterase 13 (ACOT13), which has not been reported to be related to ADPKD, and prostaglandin E receptor 2 (PTGER2) were identified as potential genes associated with ADPKD. Conclusions Through combination of WES, gene expression, and PPI network analyses, we identified ACOT13 and PTGER2 as potential ADPKD-related genes.


2021 ◽  
Vol 22 ◽  
Author(s):  
Masoud Heidari ◽  
Hamid Gharshasbi ◽  
Alireza Isazadeh ◽  
Morteza Soleyman-Nejad ◽  
Mohammad Hossein Taskhiri ◽  
...  

Background:: Polycystic kidney disease (PKD) is an autosomal recessive disorder resulting from mutations in the PKHD1 gene on chromosome 6 (6p12), a large gene spanning 470 kb of genomic DNA. Objective: The aim of the present study was to report newly identified mutations in the PKHD1 gene in two Iranian families with PKD. Materials and Methods: Genetic alterations of a 3-month-old boy and a 27-year-old girl with PKD were evaluated using whole-exome sequencing. The PCR direct sequencing was performed to analyse the co-segregation of the variants with the disease in the family. Finally, the molecular function of the identified novel mutations was evaluated by in silico study. Results: In the 3 month-old boy, a novel homozygous frameshift mutation was detected in the PKHD1 gene, which can cause PKD. Moreover, we identified three novel heterozygous missense mutations in ATIC, VPS13B, and TP53RK genes. In the 27-year-old woman, with two recurrent abortions history and two infant mortalities at early weeks due to metabolic and/or renal disease, we detected a novel missense mutation on PKHD1 gene and a novel mutation in ETFDH gene. Conclusion: In general, we have identified two novel mutations in the PKHD1 gene. These molecular findings can help accurately correlate genotype and phenotype in families with such disease in order to reduce patient births through preoperative genetic diagnosis or better management of disorders.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Prasad Devarajan ◽  
Geoffrey Block ◽  
Keisha Gibson ◽  
Jim McKay ◽  
Colin Meyer ◽  
...  

Abstract Background and Aims Knowledge about genetic causes of chronic kidney disease (CKD) is one of the key gaps in global kidney research and recent International Society of Nephrology recommendations encourage the adoption of genetic testing to enable a goal of providing precision medicine based on individual risk (1). A recent whole-exome sequencing study showed that genetic inheritance may be responsible for up to 10% of CKD diagnoses, many of which may be previously undiagnosed or mis-diagnosed (2). Continued advances in DNA sequencing technology have made genetic testing, even whole-exome sequencing, applicable to routine clinical diagnoses. In order to test the hypothesis that genetic testing can provide valuable information to increase the accuracy and precision of diagnosis in CKD, we designed a gene panel to prospectively provide genetic testing in a subset of patients with CKD defined by a specific set of inclusion criteria. Method Reata Pharmaceuticals is partnering with Invitae on a program called KidneyCode, which provides no-charge genetic testing to enable diagnosis of three specific rare monogenic causes of CKD: Alport syndrome (AS), autosomal dominant polycystic kidney disease (ADPKD) due to PKD2 mutations, and focal segmental glomerulosclerosis (FSGS), as well as detection of variants in one of the autosomal recessive polycystic kidney disease gene, PKHD1. Invitae’s renal disease panel includes 17 genes (ACTN4, ANLN, CD2AP, COL4A3, COL4A4, COL4A5, CRB2, HNF1A, INF2, LMX1B, MYO1E, NPHS1, NPHS2, PAX2, PKD2, PKHD1, and TRPC6), and its assay includes both full-gene sequencing and intragenic deletion/duplication analysis using next-generation sequencing (NGS). The assay targets the coding exons and flanking 10bp of intronic sequences. Invitae’s method of variant classification uses a systematic process for assessing evidence based on guidelines published by the American College of Medical Genetics (3). Patients in the US at risk for hereditary CKD (eGFR ≤ 90 mL/min/1.73m2 plus hematuria or a family history of CKD) or with a known diagnosis of AS or FSGS are eligible. Family members of those with suspected or known AS or FSGS are also eligible. All participants in the KidneyCode program have access to genetic counseling follow-up at no additional charge. Results In the first five months of the KidneyCode program, 152 genetic tests have been completed. A genetic variant was reported in 87 patients. Of those 87 patients, 67 patients had 75 variants in COL4A3, 4, or 5 genes (34 Pathogenic/Likely Pathogenic (P/LP), 41 Variants of Uncertain Significance (VUS)), 20 patients had 24 variants in genes associated with FSGS (3 P/LP, 21 VUS), 15 patients had 20 variants in PKHD1 (1 P/LP, 19 VUS), and 2 patients had variants in PKD2 (1 P/LP, 1 VUS). Of the 34 patients with Pathogenic or Likely Pathogenic COL4A variants, 19 reported a previous diagnosis of Alport syndrome. Other diagnoses in patients with COL4A mutations included FSGS, thin basement membrane disease, and familial hematuria. Extra-renal manifestations such as hearing loss and eye disease were reported in 7 of the 34 patients with COL4A variants. Conclusion Initial results with the KidneyCode panel demonstrate the utility of NGS and support the hypothesis that combining genetic testing with clinical presentation and medical history can significantly improve accuracy and precision of diagnosis in patients with hereditary CKD.


2020 ◽  
Author(s):  
Hyerin Kim ◽  
Hyung-Hoi Kim ◽  
Chulhun L Chang ◽  
Sang Heon Song ◽  
Namhee Kim

Abstract Objective Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic kidney disease. Identifying mutated causative genes can provide diagnostic and prognostic information. In this study, we describe the clinical application of a next generation sequencing (NGS)-based, targeted multi-gene panel test for the genetic diagnosis of patients with ADPKD. Methods We applied genetic analysis on 26 unrelated known or suspected patients with ADPKD. A total of 10 genes related to cystic change of kidney were targeted. Detected variants were classified according to standard guidelines. Results We identified 19 variants (detection rate: 73.1%), including PKD1 (n = 18) and PKD2 (n = 1). Of the 18 PKD1 variants, 8 were novel. Conclusion Multigene panel test can be a comprehensive tool in a clinical setting for genetic diagnosis of ADPKD. It allows us to identify clinically significant novel variants and confirm the diagnosis, and these objectives are difficult to achieve using conventional diagnostic tools.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyunsuk Kim ◽  
Hayne Cho Park ◽  
Hyunjin Ryu ◽  
Hyunho Kim ◽  
Hyun-Seob Lee ◽  
...  

AbstractAutosomal dominant polycystic kidney disease (ADPKD) is one of the main causes of end-stage renal disease (ESRD). Genetic information is of the utmost importance in understanding pathogenesis of ADPKD. Therefore, this study aimed to demonstrate the genetic characteristics of ADPKD and their effects on renal function in 749 Korean ADPKD subjects from 524 unrelated families. Genetic studies of PKD1/2 were performed using targeted exome sequencing combined with Sanger sequencing in exon 1 of the PKD1 gene and a multiple ligation probe assay. The mutation detection rate was 80.7% (423/524 families, 331 mutations) and 70.7% was novel. PKD1 protein-truncating (PKD1-PT) genotype was associated with younger age at diagnosis, larger kidney volume, lower renal function compared to PKD1 non-truncating and PKD2 genotypes. The PKD1 genotype showed earlier onset of ESRD compared to PKD2 genotype (64.9 vs. 72.9 years old, P < 0.001). In frailty model controlled for age, gender, and familial clustering effect, PKD2 genotype had 0.2 times lower risk for reaching ESRD than PKD1-PT genotype (p = 0.037). In conclusion, our results suggest that genotyping can contribute to selecting rapid progressors for new emerging therapeutic interventions among Koreans.


Sign in / Sign up

Export Citation Format

Share Document