scholarly journals Resource use efficiency of indoor lettuce (Lactuca sativa L.) cultivation as affected by red:blue ratio provided by LED lighting

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Giuseppina Pennisi ◽  
Francesco Orsini ◽  
Sonia Blasioli ◽  
Antonio Cellini ◽  
Andrea Crepaldi ◽  
...  

Abstract LED lighting in indoor farming systems allows to modulate the spectrum to fit plant needs. Red (R) and blue (B) lights are often used, being highly active for photosynthesis. The effect of R and B spectral components on lettuce plant physiology and biochemistry and resource use efficiency were studied. Five red:blue (RB) ratios (0.5-1-2-3-4) supplied by LED and a fluorescent control (RB = 1) were tested in six experiments in controlled conditions (PPFD = 215 μmol m−2 s−1, daylength 16 h). LED lighting increased yield (1.6 folds) and energy use efficiency (2.8 folds) as compared with fluorescent lamps. Adoption of RB = 3 maximised yield (by 2 folds as compared with RB = 0.5), also increasing leaf chlorophyll and flavonoids concentrations and the uptake of nitrogen, phosphorus, potassium and magnesium. As the red portion of the spectrum increased, photosystem II quantum efficiency decreased but transpiration decreased more rapidly, resulting in increased water use efficiency up to RB = 3 (75 g FW L−1 H2O). The transpiration decrease was accompanied by lower stomatal conductance, which was associated to lower stomatal density, despite an increased stomatal size. Both energy and land surface use efficiency were highest at RB ≥ 3. We hereby suggest a RB ratio of 3 for sustainable indoor lettuce cultivation.

2017 ◽  
Vol 68 (5) ◽  
pp. 442 ◽  
Author(s):  
A. Sennhenn ◽  
D. M. G. Njarui ◽  
B. L. Maass ◽  
A. M. Whitbread

Short-season grain legumes play an important role in smallholder farming systems as source of food and to improve soil fertility through nitrogen fixation. However, it is not clearly understood how these diverse legumes contribute to the resilience of such systems in semi-arid environments. We describe the growth, development and resource-use efficiency (focusing on radiation, RUE) of three promising short-season grain legumes: common bean (Phaseolus vulgaris L.), cowpea (Vigna unguiculata (L.) Walp.) and lablab (Lablab purpureus (L.) Sweet). Two field experiments were conducted during the short rains of 2012–13 and 2013–14 in Eastern Kenya. In the first experiment, the legumes were grown at three plant densities (low, medium, high); in the second experiment, they were subjected to three water regimes (rainfed, partly irrigated, fully irrigated). Phenological development was monitored and biomass accumulation, leaf area index and fractional radiation interception were measured repeatedly during growth; grain yield was measured at maturity. Harvest index and RUE were calculated from these data. Common bean had the shortest growing period (70 days), the most compact growth habit and relatively high RUE but limited grain yield (1000–1900 kg ha–1), thereby proving more suitable for cultivation in areas with restricted cropping windows or in intercropping systems. Cowpea had a longer growing period (90 days) and a spreading growth habit leading to high light interception and outstanding grain yields under optimal conditions (1400–3050 kg ha–1). Lablab showed stable RUE values (0.76–0.92 g MJ–1), was relatively unaffected by limited water availability and had a comparatively long growing period (100 days). Lablab grain yields of ~1200–2350 kg ha–1 were obtained across all water regimes, indicating a high potential to cushion climatic variability. Planting density strongly influenced the production success of cowpea and lablab, with high plant densities leading to vigorous growth habit with low podset establishment. Such information on temporal and spatial differences in growth, development and resource-use efficiency is highly valuable for crop-modelling applications and for designing more resilient farming systems with short-season grain legumes.


2016 ◽  
Vol 52 (4) ◽  
pp. 617-634 ◽  
Author(s):  
V. KARUNAKARAN ◽  
U. K. BEHERA

SUMMARYContinuous rice–wheat (RW) cropping in an area of 13.5 million ha with intensive tillage has resulted in over exploitation of resources, decline of the factor productivity, loss of soil fertility and biodiversity and decline of resource use efficiency in the Indo-Gangetic plains (IGPs) of South Asia. This has led to unsustainability of agriculture in the region. Replacement of a cereal-cereal system with a legume–cereal system may prove beneficial for long-term sustainability of the system. A field experiment was conducted with soybean–wheat (SW) rotation in the IGP of India during 2009–10 and 2010–11 to assess the suitability of conservation tillage versus conventional tillage (CT) and crop-establishment techniques, namely bed (B) planting versus flat (F) planting. The study revealed that the zero tillage (ZT) for soybean during rainy and for wheat during winter season either in flat or in bed system performed equally good with CT. The maximum system productivity (7.06 t ha−1 in 2009–10 and 8.48 t ha−1 in 2010–11) was obtained with combined application of wheat + soybean residue. The maximum net returns of ₹46.98 and ₹65.08 thousands and B:C ratio of 2.35 and 3.08 were recorded in the SW system with zero tillage-flat (ZT─F) during 2009–10 and 2010–11, respectively. The minimum energy of 64.67 and 63.01 ×103 MJ ha−1 was utilized as input energy with zero tillage-bed (ZT─B) while the maximum energy use efficiency of 4.10 and 5.14 was obtained with ZT─F and ZT─B for the SW system during 2009–10 and 2010–11 respectively. The gross output energy was maximum with wheat + soybean residue (241.6 and 265.7 ×103 MJ ha−1) contrary to this the net energy (194.4 and 213.4 ×103 MJ ha−1) and energy use efficiency (9.03 and 10.96) was maximum with control (no residue) in the SW system. In wheat there was 37.85% improvement in irrigation water use efficiency (WUE) in raised bed planting than flat planting and 28.57% of irrigation water was saved. The study suggested that ZT either bed or flat planting to both the crops can successfully adopted along with application wheat + soybean residue together with full recommended dose of NPK fertilizers to the system for improving productivity, profitability, soil health and sustainability of SW system in the IGPs of South Asia.


Author(s):  
Tomas Baležentis ◽  
Jens Leth Hougaard

Resource use efficiency is a critical issue for a competitive and sustainable economic activity. Indeed, resource use efficiency implies both economic and environmental consequences. Therefore, a sustainable rural development policy is required to promote resource use efficiency. In order to identify the prospective directions for strategic management of the resource in Lithuanian agricultural sector, the trends of the resource use therein are to be identified. The aim of the present paper is to analyse the trends of the resource use in Lithuanian agricultural sector and thus identify the most problematic areas. The concept of decoupling is used to describe the underlying changes in the resource use. The World Input-Output Database (WIOD) is applied for the analysis. The research focuses on energy use, land use, material extraction and carbon emission from the agricultural sector. The results show that the period of 1995–2009 was specific with weak (relative) decoupling of the material extraction from the economic activity and expansive negative decoupling of the use of water resources from the economic activity.


2008 ◽  
Vol 146 (5) ◽  
pp. 493-505 ◽  
Author(s):  
U. K. BEHERA ◽  
C. M. YATES ◽  
E. KEBREAB ◽  
J. FRANCE

SUMMARYFarming systems research is a multi-disciplinary holistic approach to solve the problems of small farms. Small and marginal farmers are the core of the Indian rural economy constituting 0·80 of the total farming community but possessing only 0·36 of the total operational land. The declining trend of per capita land availability poses a serious challenge to the sustainability and profitability of farming. Under such conditions, it is appropriate to integrate land-based enterprises such as dairy, fishery, poultry, duckery, apiary, field and horticultural cropping within the farm, with the objective of generating adequate income and employment for these small and marginal farmers under a set of farm constraints and varying levels of resource availability and opportunity. The integration of different farm enterprises can be achieved with the help of a linear programming model. For the current review, integrated farming systems models were developed, by way of illustration, for the marginal, small, medium and large farms of eastern India using linear programming. Risk analyses were carried out for different levels of income and enterprise combinations. The fishery enterprise was shown to be less risk-prone whereas the crop enterprise involved greater risk. In general, the degree of risk increased with the increasing level of income. With increase in farm income and risk level, the resource use efficiency increased. Medium and large farms proved to be more profitable than small and marginal farms with higher level of resource use efficiency and return per Indian rupee (Rs) invested. Among the different enterprises of integrated farming systems, a chain of interaction and resource flow was observed. In order to make farming profitable and improve resource use efficiency at the farm level, the synergy among interacting components of farming systems should be exploited. In the process of technology generation, transfer and other developmental efforts at the farm level (contrary to the discipline and commodity-based approaches which have a tendency to be piecemeal and in isolation), it is desirable to place a whole-farm scenario before the farmers to enhance their farm income, thereby motivating them towards more efficient and sustainable farming.


2002 ◽  
Vol 33 (6) ◽  
pp. 403-413 ◽  
Author(s):  
C G J Michielsens ◽  
K Lorenzen ◽  
M J Phillips ◽  
R Gauthier

2021 ◽  
Author(s):  
Defne Ulukan ◽  
Lucille Steinmetz ◽  
Marie Moerman ◽  
Gun Bernes ◽  
Mathilde Blanc ◽  
...  

AbstractWhile there is increasing evidence of the sustainability benefits of diversified systems in the organic cropping sector, this has been much less investigated with organic livestock farming. To fill this knowledge gap, we surveyed a sample of 128 European organic multi-species livestock farms located across seven countries – Austria, Belgium, France, Germany, Italy, Sweden and Switzerland – and covering a large range of livestock species combinations. We recorded 1574 variables as raw data out of which we calculated 107 indicators describing farm structure, management and several sustainability dimensions: resource use efficiency and conservation, animal, land and work productivities, animal and human welfare. After technical validation of the data, we withdrew 26 farms and the database covers 102 farms. This database is well suited to unveil relationships between various dimensions of organic multi-species livestock farm sustainability and their structure and management. It can help reveal sustainable strategies for organic multi-species livestock farming systems and understand levers or barriers to their development.


2011 ◽  
Vol 3 (9) ◽  
pp. 532-534
Author(s):  
Ganeshkumar D Rede ◽  
◽  
Dr. S. J. Kakde Dr. S. J. Kakde ◽  
Vanita Khobarkar

Sign in / Sign up

Export Citation Format

Share Document