scholarly journals Thermal engineering of stone increased prehistoric toolmaking skill

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Veronica Mraz ◽  
Mike Fisch ◽  
Metin I. Eren ◽  
C. Owen Lovejoy ◽  
Briggs Buchanan

Abstract Intentional heat treating of toolstone has been documented to have begun at least by 70 K BP; however, the advantages of such treatment have been debated for decades. There are two schools of thought with regard to its purpose. One, is that it merely reduces the force required for flake propagation. A second is that it also alters flake morphological properties. We systematically tested these hypotheses by generating flakes from cores exposed to three different temperatures (ambient, 300 °C, and 350 °C) using automated propagation procedures that bypassed any human agency. While the force propagation magnitude is altered by heat treatment, the flakes were not. We examined these flakes according to nine measures of morphology. None differed significantly or systematically within the three categories. While our results confirm that heat treatment does reduce the force needed for flake propagation, they also demonstrate that such treatment has no significant effect on major morphological aspects of flake form.

2019 ◽  
Vol 63 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Prasad U. Syam ◽  
V. V. Kondaiah ◽  
K. Akhil ◽  
V. Vijay Kumar ◽  
B. Nagamani ◽  
...  

Abstract Magnesium and its alloys are now attracting a great attention as promising materials for several light weight engineering applications. ZE41 is a new Mg alloy contains Zinc, Zirconium and Rare Earth elements as the important alloying elements and is widely used in aerospace applications. In the present study, heat treatment has been carried out at two different temperatures (300 and 335 °C) to assess the effect of heat treatment on microstructure and corrosion behavior of ZE41 Mg alloy. The grain size was observed as almost similar for the unprocessed and heat treated samples. Decreased amount of secondary phase (MgZn2) was observed after heat treating at 300 °C and increased intermetallic phase (Mg7Zn3) and higher number of twins appeared for the samples heat treated at 335 °C. Microhardness measurements showed increased hardness after heat treating at 300 °C and decreased hardness after heat treating at 335 °C which can be attributed to the presence of higher supersaturated grains after heat treating at 300 °C. The samples heat treated at 335 °C exhibited better corrosion resistance compared to those of base materials and samples heat treated at 300 °C. From the results, it can be understood that the selection of heat treatment temperature is crucial that depends on the requirement i.e. to improve the microhardness or at the loss of microhardness to improve the corrosion resistance of ZE41 Mg alloy.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2000 ◽  
Vol 49 (10) ◽  

Abstract CMW 100 is a copper alloy that combines high tensile strength with high electrical and thermal conductivity. It responds to age-hardening heat treatment. It is used for flash welding dies, springs, electrical components, high-strength backing material for brazed assemblies, and wire guides. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-29. Producer or source: CMW Inc. Originally published as Mallory 100, August 1955, revised October 2000.


Alloy Digest ◽  
1953 ◽  
Vol 2 (10) ◽  

Abstract CONDULOY is a low beryllium-copper alloy containing about 1.5% nickel. It responds to age-hardening heat treatment for improved mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on casting, heat treating, machining, and joining. Filing Code: Cu-11. Producer or source: Brush Beryllium Company.


Alloy Digest ◽  
1987 ◽  
Vol 36 (12) ◽  

Abstract UNS No. A02060 is an aluminum-mold casting alloy that responds to an age-hardening heat treatment. It is recommended for applications that require a combination of high tensile properties and good machinability. Among its many uses are fuel pump bodies, aircraft fittings and seat frames for railway passenger cars. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-285. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1974 ◽  
Vol 23 (3) ◽  

Abstract ALMANITE W comprises a series of three types of austenitic-martensitic white irons characterized by high hardness and relatively good impact strength. Type W1 has a pearlitic matrix. Type W2 has a martensitic matrix, Type W4 is highly alloyed to provide an austenitic matrix in the as-cast condition which may be further modified to give a martensitic matrix by heat treatment or by refrigeration. This datasheet provides information on composition, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on casting, heat treating, machining, and surface treatment. Filing Code: CI-42. Producer or source: Meehanite Metal Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract INCO ALLOY 330 is a nickel/iron/chromium austenitic alloy, not hardenable by heat treatment. It is a solid solution strengthened high-temperature alloy. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-403. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1983 ◽  
Vol 32 (2) ◽  

Abstract ALUMINUM C355.0 is a high-purity casting alloy that responds to an age-hardening heat treatment. It can be cast successfully by the sand and permanent-mold processes. Its castings characteristics are excellent and it is recommended for pressure-tight castings. It has good resistance to corrosion. Its applications include propeller gear boxes, crankcases and stressed structural parts in aircraft. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-243. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1982 ◽  
Vol 31 (11) ◽  

Abstract ALUMINUM 296.0 is an aluminum permanent-mold casting alloy that responds to an age-hardening heat treatment. It is recommended for applications that require a combination of high tensile properties and good machinability. Among its many uses are fuel pump bodies, aircraft fittings and seat frames for railway passengers cars. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-241. Producer or source: Various aluminum companies. See also Alloy Digest Al-261, October 1985.


Alloy Digest ◽  
1974 ◽  
Vol 23 (4) ◽  

Abstract ALUMINUM 3004 is nominally an aluminum-manganese-magnesium alloy which cannot be hardened by heat treatment; however, it can be strain hardened by cold working. It has higher strength than Aluminum 3003 and good workability, weldability and resistance to corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-51. Producer or source: Various aluminum companies. Originally published June 1957, revised April 1974.


Sign in / Sign up

Export Citation Format

Share Document