scholarly journals Structural and phylogenetic implications of the complete mitochondrial genome of Ledra auditura

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jia-Jia Wang ◽  
De-Fang Li ◽  
Hu Li ◽  
Mao-Fa Yang ◽  
Ren-Huai Dai

Abstract We sequenced and annotated the first complete mitochondrial genome (mitogenome) of Ledra auditura (Hemiptera: Cicadellidae: Ledrinae) and reconstructed phylogenetic relationships among 47 species (including 2 outgroup species) on the basis of 3 datasets using maximum likelihood (ML) and Bayesian inference (BI) analyses. The complete L. auditura mitogenome (length, 16,094 bp) comprises 37 genes [13 protein-coding genes (PCGs), 22 tRNAs, and 2 rRNAs], 1 control region, and 2 long non-coding regions. The first long non-coding region (length, 211 bp) is located between tRNA-I and tRNA-Q and the second region (length, 994 bp) between tRNA-S2 and ND1. All PCGs show ATN (Met/Ile) as their start codon and TAR as their stop codon. Except tRNA-S1 (AGN), which lacks the dihydrouridine arm, all tRNAs can fold into the typical cloverleaf secondary structure. The complete L. auditura mitogenome shows a base composition bias of 76.3% A + T (A = 29.9%, T = 46.4%, G = 13.3%, and C = 10.5%), negative AT skew of −0.22, and positive GC skew of 0.12. In ML and BI analyses, L. auditura was clustered with Evacanthus heimianus (Hemiptera: Cicadellidae: Evacanthinae) with strong branch support.

Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 534 ◽  
Author(s):  
Deliang Xu ◽  
Tinghao Yu ◽  
Yalin Zhang

To explore the mitogenome characteristics and shed light on the phylogenetic relationships and molecular evolution of Drabescini species, we sequenced and analyzed the complete mitochondrial genome of two species including Drabescus ineffectus and Roxasellana stellata. The complete mitogenomes of D. ineffectus and R. stellata are circular, closed and double-stranded molecules with a total length of 15744 bp and 15361 bp, respectively. These two newly sequenced mitogenomes contain the typical 37 genes. Most protein-coding genes (PCGs) began with the start codon ATN and terminated with the terminal codon TAA or TAG, with an exception of a special initiation codon of ND5, which started with TTG, and an incomplete stop codon T-- was found in the Cytb, COX2, ND1 and ND4. All tRNAs could be folded into the canonical cloverleaf secondary structure except for the trnS1, which lacks the DHU arm and is replaced by a simple loop. The multiple tandem repeat units were found in A + T-control region. The sliding window, Ka/Ks and genetic distance analyses indicated that the ATP8 presents a high variability and fast evolutionary rate compared to other PCGs. Phylogenetic analyses based on three different datasets (PCG123, PCG12R and AA) using both Bayesian inference (BI) and maximum likelihood (ML) methods showed strong support for the monophyly of Drabescini.


2021 ◽  
Author(s):  
Haikun Li ◽  
Ruihai Yu ◽  
Peizhen Ma ◽  
Chunhua Li

Abstract The complete mitochondrial genome of Cultellus attenuates, a new aquaculture species, was sequenced and compared with mitogenomes from seven species of Heterodonta bivalve mollusk in the gene bank. The mitochondrial genome of C. attenuatus is 16888bp in length and contains 36 genes, including 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs, and all genes are encoded on the same strand. In comparison with C. attenuates, the mitochondrial genes of the Sinonovacula constricta from the same family were not rearranged, but those of six other species from different family were rearranged to different degrees. The largest non-coding region of C. attenuatus is 1173bp in length and with the A + T content of 68.24%, located between nad2 and trnK. The results of phylogenetic analysis show that the C. attenuates and the S. constricta belonging to Cultellidae cluster into one branch while two species of Solenidae ( Solen grandis and Solen strictus) are clustering as their sister taxon. These data not only contribute to the understanding of the phylogenetic relationship of the Heterodonta, but also serve as a resource for the development of the genetic markers in aquaculture.


Zootaxa ◽  
2021 ◽  
Vol 5071 (3) ◽  
pp. 437-446
Author(s):  
MENG-QI WANG ◽  
YAO DENG ◽  
DE-LONG GUAN ◽  
BEN-YONG MAO ◽  
MIAO LI

A new species, Tuberfemurus viridulus sp. nov. is described and illustrated with photographs. The new species is similar to T. torulisinotus Deng, 2019, but differs from the latter by broader vertex, invisible frontal costa in profile, distinctly truncate apex of hind pronotal process, and two large triangular projections on lower outer carinae of hind femur. An updated key to species of Tuberfemurus is provided. Simultaneously, the complete mitochondrial genome of Tuberfemurus viridulus sp. nov. is sequenced and analyzed. The total length of the assembled mitogenome is 15,060 bp with 37 typical mitochondrial genes and a non-coding region (A + T-rich region). The order and orientation of the gene arrangement pattern are identical to that of most Tetrigoidea species. All PCGs initiate with the standard start codon of ATN, except ATP6 with GAC and ND1 with TTG; and terminate with the complete stop codon (TAA/TAG) or with an incomplete T- codon. This data could provide the genome information available for Tetrigoidea and facilitate phylogenetic studies of related insects.  


ZooKeys ◽  
2018 ◽  
Vol 790 ◽  
pp. 127-144 ◽  
Author(s):  
Qiao-Hua Zhang ◽  
Pan Huang ◽  
Bin Chen ◽  
Ting-Jing Li

To date, only one mitochondrial genome (mitogenome) in the Eumeninae has been reported in the world and this is the first report in China. The mitogenome ofO.a.aterrimusis 17 972 bp long, and contains 38 genes, including 13 protein coding genes (PCGs), 23 tRNA genes, two rRNA genes, a long non-coding region (NCR), and a control region (CR). The mitogenome has 79.43% A + T content, its 13 PCGs use ATN as the initiation codon except forcox1using TTG, and nine genes used complete translation termination TAA and four genes have incomplete stop codon T (cox2,cox3,nad4, andcytb). Twenty-two of 23 tRNAs can form the typical cloverleaf secondary structure except fortrnS1. The CR is 1 078 bp long with 84.69% A+T content, comprising 28 bp tandem repeat sequences and 13 bp T-strech. There are two gene rearrangements which are an extratrnM2located betweentrnQandnad2and thetrnL2in the upstream ofnad1. Within all rearrangements of these mitogenomes reported in the family Vespidae, the translocation betweentrnS1andtrnEgenes only appears in Vespinae, and the translocation oftrnYin Polistinae and Vespinae. The absent codons of 13 PCGs in Polistinae are more than those both in Vespinae and Eumeninae in the family Vespidae. The study reports the complete mitogenome ofO.a.aterrimus, compares the characteristics and construct phylogenetic relationships of the mitogenomes in the family Vespidae.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 563 ◽  
Author(s):  
Hu Li

In this study, the complete mitochondrial genomes (mitogenomes) of two hoverfly species of Korinchia angustiabdomena (Huo, Ren, and Zheng) and Volucella nigricans Coquillett (Diptera: Syrphidae) were determined and analyzed. The circular mitogenomes were 16,473 bp in K. angustiabdomena (GenBank No. MK870078) and 15,724 bp in V. nigricans (GenBank No. MK870079). Two newly sequenced mitogenomes both contained 37 genes, and the gene order was similar with other syrphine species. All the protein-coding genes (PCGs) were started with the standard ATN codons; and most of PCGs were terminated with a TAA stop codon, while ND1 in K. angustiabdomena ended with a TAG codon, and ND5 terminated with truncated T stop codons in both species. The phylogenetic relationship between K. angustiabdomena and V. nigricans with related lineages was reconstructed using Bayesian inference and Maximum-likelihood analyses. The monophyly of each family considered within Muscomorpha was confirmed by the clades in the phylogenetic tree, and superfamily of the Oestroidea (Calliphoridae, Sarcophagidae, and Oestridae) was unexpectedly found to be a paraphyletic group based on our selected data. This mitogenome information for K. angustiabdomena and V. nigricans could facilitate future studies of evolutionarily related insects.


Insects ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 87
Author(s):  
Lilan Yuan ◽  
Xueying Ge ◽  
Guanglin Xie ◽  
Haoyu Liu ◽  
Yuxia Yang

To explore the characteristics of the mitogenome of Melyridae and reveal phylogenetic relationships, the mitogenome of Cordylepherus sp. was sequenced and annotated. This is the first time a complete mitochondrial genome has been generated in this family. Consistent with previous observations of Cleroidea species, the mitogenome of Cordylepherus sp. is highly conserved in gene size, organization and codon usage, and secondary structures of tRNAs. All protein-coding genes (PCGs) initiate with the standard start codon ATN, except ND1, which starts with TTG, and terminate with the complete stop codons of TAA and TAG, or incomplete forms, TA- and T-. Most tRNAs have the typical clover-leaf structure, except trnS1 (Ser, AGN), whose dihydrouridine (DHU) arm is reduced. In the A+T-rich region, three types of tandem repeat sequence units are found, including a 115 bp sequence tandemly repeated twice, a 16 bp sequence tandemly repeated three times with a partial third repeat and a 10 bp sequence tandemly repeated seven times. Phylogenetic analyses based on 13 protein-coding genes by both Bayesian inference (BI) and maximum likelihood (ML) methods suggest that Melyridae sensu lato is polyphyletic, and Dasytinae and Malchiinae are supported as independent families.


2020 ◽  
Vol 20 (2) ◽  
Author(s):  
Yang-Yang Liu ◽  
Zhi-Cheng Zhou ◽  
Xiang-Sheng Chen

Abstract The complete mitochondrial genome (mitogenome) of Epicauta impressicornis Pic (Coleoptera: Meloidae) was determined. The circular genome is 15,713-bp long, and encodes 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a control region (CR). The 13 PCGs start with the typical ATN codon and terminate with the typical stop codon TAA (ND2, ND4L, ND6, ATP6, ATP8, and CYTB), TAG (ND1 and ND3), and T- (COX1, COX2, COX3, ND4, and ND5). The two rRNA genes (rrn12S and rrn16S) are encoded on the minority strand. All tRNAs genes except trnS1 (AGN) are predicted to fold into the typical cloverleaf structure. The longest overlap (10 bp) is observed between ATP8 and ATP6. CR mainly harbors a conserved poly-T stretch (15 bp), a short repeat unit (17 bp), some universal microsatellite-like repeats, and a canonical poly-A tail. Phylogenetic analysis using Bayesian inferences and maximum likelihood based on nucleotide and corresponding amino acid sequences of the 13 PCGs showed that E. impressicornis is closely related to E. chinensis, this relationship is and supported within Cucujiformia belonging to Meloidae (Tenebrionoidea). Our results further confirmed the monophyly of Tenebrionoidea, Lymexyloidea, Curculionoidea, Chrysomeloidea, Cucujoidea, Coccinelloidea, and Cleroidea within Cucujiformia, and revealed the sister relationships of (Cleroidea + Coccinelloidea), (Lymexyloidea + Tenebrionoidea), and ((Chrysomeloidea + Cucujoidea) + Curculionoidea). We believe that the complete mitogenome of E. impressicornis will contribute to further studies on molecular bases for the classification and phylogeny of Meloidae or even Cucujiformia.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vikas Kumar ◽  
Kaomud Tyagi ◽  
Rajasree Chakraborty ◽  
Priya Prasad ◽  
Shantanu Kundu ◽  
...  

AbstractThe complete mitochondrial genome of Lyrognathus crotalus is sequenced, annotated and compared with other spider mitogenomes. It is 13,865 bp long and featured by 22 transfer RNA genes (tRNAs), and two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and a control region (CR). Most of the PCGs used ATN start codon except cox3, and nad4 with TTG. Comparative studies indicated the use of TTG, TTA, TTT, GTG, CTG, CTA as start codons by few PCGs. Most of the tRNAs were truncated and do not fold into the typical cloverleaf structure. Further, the motif (CATATA) was detected in CR of nine species including L. crotalus. The gene arrangement of L. crotalus compared with ancestral arthropod showed the transposition of five tRNAs and one tandem duplication random loss (TDRL) event. Five plesiomophic gene blocks (A-E) were identified, of which, four (A, B, D, E) retained in all taxa except family Salticidae. However, block C was retained in Mygalomorphae and two families of Araneomorphae (Hypochilidae and Pholcidae). Out of 146 derived gene boundaries in all taxa, 15 synapomorphic gene boundaries were identified. TreeREx analysis also revealed the transposition of trnI, which makes three derived boundaries and congruent with the result of the gene boundary mapping. Maximum likelihood and Bayesian inference showed similar topologies and congruent with morphology, and previously reported multi-gene phylogeny. However, the Gene-Order based phylogeny showed sister relationship of L. crotalus with two Araneomorphae family members (Hypochilidae and Pholcidae) and other Mygalomorphae species.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242541
Author(s):  
Lvpei Du ◽  
Shanya Cai ◽  
Jun Liu ◽  
Ruoyu Liu ◽  
Haibin Zhang

Phymorhynchus is a genus of deep-sea snails that are most distributed in hydrothermal vent or cold seep environments. In this study, we presented the complete mitochondrial genome of P. buccinoides, a cold seep snail from the South China Sea. It is the first mitochondrial genome of a cold seep member of the superfamily Conoidea. The mitochondrial genome is 15,764 bp in length, and contains 13 protein-coding genes (PCGs), 2 rRNA genes, and 22 tRNA genes. These genes are encoded on the positive strand, except for 8 tRNA genes that are encoded on the negative strand. The start codon ATG and 3 types of stop codons, TAA, TAG and the truncated termination codon T, are used in the 13 PCGs. All 13 PCGs in the 26 species of Conoidea share the same gene order, while several tRNA genes have been translocated. Phylogenetic analysis revealed that P. buccinoides clustered with Typhlosyrinx sp., Eubela sp., and Phymorhynchus sp., forming the Raphitomidae clade, with high support values. Positive selection analysis showed that a residue located in atp6 (18 S) was identified as the positively selected site with high posterior probabilities, suggesting potential adaption to the cold seep environment. Overall, our data will provide a useful resource on the evolutionary adaptation of cold seep snails for future studies.


ZooKeys ◽  
2021 ◽  
Vol 1061 ◽  
pp. 57-73
Author(s):  
Renyi Zhang ◽  
Qian Tang ◽  
Lei Deng

Mitochondria are important organelles with independent genetic material of eukaryotic organisms. In this study, we sequenced and analyzed the complete mitogenome of a small cyprinid fish, Microphysogobio elongatus (Yao & Yang, 1977). The mitogenome of M. elongatus is a typical circular molecule of 16,612 bp in length containing 13 protein-coding genes (PCGs), 22 transfer RNA genes, two ribosomal RNA genes, and a 930 bp control region. The base composition of the M. elongatus mitogenome is 30.8% A, 26.1% T, 16.7% G, and 26.4% C. All PCGs used the standard ATG start codon with the exception of COI. Six PCGs terminate with complete stop codons, whereas seven PCGs (ND2, COII, ATPase 6, COIII, ND3, ND4, and Cyt b) terminate with incomplete (T or TA) stop codons. All tRNA genes exhibited typical cloverleaf secondary structures with the exception of tRNASer(AGY), for which the dihydrouridine arm forms a simple loop. The phylogenetic analysis divided the subfamily Gobioninae in three clades with relatively robust support, and that Microphysogobio is not a monophyletic group. The complete mitogenome of M. elongatus provides a valuable resource for future studies about molecular phylogeny and/or population genetics of Microphysogobio.


Sign in / Sign up

Export Citation Format

Share Document