scholarly journals Ventilator settings and outcome of respiratory failure in paraquat-induced pulmonary injury

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Seyedehparvin Khazraei ◽  
Sayed Mahdi Marashi ◽  
Hossein Sanaei-Zadeh

Abstract Paraquat is a nonselective contact herbicide that has significant importance in clinical toxicology due to its high mortality rate. The cause of mortality in the acute phase of poisoning is a multi-organ failure while in the sub-acute phase is alveolar injury and lung fibrosis. The aim of this study was to evaluate the advantages and drawbacks of mechanical ventilation (MV) in paraquat-induced pulmonary injury and its consequential respiratory failure (PIPI-CRF). This retrospective descriptive analytical study was done to investigate the outcome of patients who had developed PIPI-CRF and underwent conventional treatments with invasive MV in three teaching hospitals in Shiraz, Iran, from March 2010 to February 2015. In total, 44 patients (mean age of 27.9 ± 9.98 years) had undergone MV due to PIPI-CRF. None of the patients had a successful wean off from the ventilator. Although all the patients’ were on aggressive life support and full efforts to resuscitate were carried out in case of cardiac arrest, all of them expired. We suggest that in the case of conventional treatment of paraquat poisoning, only noninvasive ventilation should be applied. However, considering the chance of patient’s survival performing novel treatments, such as extracorporeal membrane oxygenation (ECMO), lung protective ventilation with optimal positive end-expiratory pressure (PEEP) could be applied only in such circumstances.

2018 ◽  
Author(s):  
Pauline K. Park ◽  
Nicole L Werner ◽  
Carl Haas

Invasive and noninvasive ventilation are important tools in the clinician’s armamentarium for managing acute respiratory failure. Although these modalities do not treat the underlying disease, they can provide the necessary oxygenation and ventilatory support until the causal pathology resolves. Care must be taken as even appropriate application can cause harm. Knowledge of pulmonary mechanics, appreciation of the basic machine settings, and an understanding of how common and advanced modes function allows the clinician to optimally tailor support to the patient while limiting iatrogenic injury. This second chapter reviews indications for mechanical ventilation, routine management, troubleshooting, and liberation from mechanical ventilation This review contains 6 figures, 7 tables and 60 references Keywords: Mechanical ventilation, lung protective ventilation, sedation, ventilator-induced lung injury, liberation from mechanical ventilation 


2016 ◽  
Author(s):  
Eddy Fan ◽  
Alice Vendramin

Acute respiratory failure (ARF) is a common reason for admission to the intensive care unit (ICU), and is associated with significant morbidity and mortality. Failure of one or more components of the respiratory system can lead to hypoxemia, hypercabia, or both. Initial evaluation of patients with ARF should include physical examination, chest imaging, and arterial blood gases (ABG) sampling. As ARF is often a life-threatening emergency, a patient’s oxygenation and ventilation will need to be supported at the same time that diagnostic and therapeutic interventions are planned. The priorities for early treatment are essentially those of basic life support: airway and breathing. The first step is to assess a patient’s airway and ascertain that it is patent. This is followed by efforts to support both oxygenation and ventilation. This can include non-invasive or invasive mechanical ventilatory support. As with all interventions, there are risks inherent in the use of mechanical ventilation, which may be minimized by the use of lung protective ventilation (i.e., with low tidal volumes and airway pressures). Finally, due to the potential complications associated with mechanical ventilation, it is important to regularly assess whether a patient continues to require the assistance of the ventilator, and to liberate patients from mechanical ventilation at the earliest opportunity when clinically safe and feasible to do so. Figures depict pressure-time curve. Tables list the clinical causes of hypoxemic respiratory failure, oxygen delivery devices, indications for noninvasive positive pressure support, common causes of abnormal respiratory mechanics, and common causes of acute respiratory distress syndrome (ARDS). This review contains 2 highly rendered figures, 5 tables, and 86 references.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2040 ◽  
Author(s):  
Roger Alencar ◽  
Vittorio D'Angelo ◽  
Rachel Carmona ◽  
Marcus J Schultz ◽  
Ary Serpa Neto

Although mechanical ventilation is a life-saving strategy in critically ill patients and an indispensable tool in patients under general anesthesia for surgery, it also acts as a double-edged sword. Indeed, ventilation is increasingly recognized as a potentially dangerous intrusion that has the potential to harm lungs, in a condition known as ‘ventilator-induced lung injury’ (VILI). So-called ‘lung-protective’ ventilator settings aiming at prevention of VILI have been shown to improve outcomes in patients with acute respiratory distress syndrome (ARDS), and, over the last few years, there has been increasing interest in possible benefit of lung-protective ventilation in patients under ventilation for reasons other than ARDS. Patients without ARDS could benefit from tidal volume reduction during mechanical ventilation. However, it is uncertain whether higher levels of positive end-expiratory pressure could benefit these patients as well. Finally, recent evidence suggests that patients without ARDS should receive low driving pressures during ventilation.


2018 ◽  
Author(s):  
Eddy Fan ◽  
Alice Vendramin

Acute respiratory failure (ARF) is a common reason for admission to the intensive care unit (ICU), and is associated with significant morbidity and mortality. Failure of one or more components of the respiratory system can lead to hypoxemia, hypercabia, or both. Initial evaluation of patients with ARF should include physical examination, chest imaging, and arterial blood gases (ABG) sampling. As ARF is often a life-threatening emergency, a patient’s oxygenation and ventilation will need to be supported at the same time that diagnostic and therapeutic interventions are planned. The priorities for early treatment are essentially those of basic life support: airway and breathing. The first step is to assess a patient’s airway and ascertain that it is patent. This is followed by efforts to support both oxygenation and ventilation. This can include non-invasive or invasive mechanical ventilatory support. As with all interventions, there are risks inherent in the use of mechanical ventilation, which may be minimized by the use of lung protective ventilation (i.e., with low tidal volumes and airway pressures). Finally, due to the potential complications associated with mechanical ventilation, it is important to regularly assess whether a patient continues to require the assistance of the ventilator, and to liberate patients from mechanical ventilation at the earliest opportunity when clinically safe and feasible to do so. Figures depict pressure-time curve. Tables list the clinical causes of hypoxemic respiratory failure, oxygen delivery devices, indications for noninvasive positive pressure support, common causes of abnormal respiratory mechanics, and common causes of acute respiratory distress syndrome (ARDS). This review contains 2 highly rendered figures, 5 tables, and 86 references.


Author(s):  
J. Aaron Scott ◽  
Vivek Moitra

The ExPress Trial examined the role of a positive end-expiratory pressure (PEEP) strategy targeting increased alveolar recruitment versus minimal alveolar distension in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Although lung protective ventilation in ALI and ARDS showed significant mortality benefit, the optimal PEEP strategy was unclear. The primary outcome of the study was 28 day mortality. Secondary outcomes included ventilator-free days, organ failure–free days, and barotrauma-related adverse events. Even though there was no significant difference in mortality between the two arms of the study, a significant difference was identified in ventilator-free days and organ failure–free days, which supported an increased recruitment PEEP strategy in the ALI/ARDS population and encouraged further examination.


2018 ◽  
Vol 69 (1) ◽  
pp. 771
Author(s):  
N. VIDENOVIC ◽  
J. MLADENOVIC ◽  
V. VIDENOVIC ◽  
R. ZDRAVKOVIC

Mechanical ventilation has long been the leader in the treatment of critically ill and injured patients in an intensive care unit. The aim of this study was to examine the impact of the application of positive end-expiratory pressure on histopathological findings and on the parameters of ventilation, oxygenation and acid-base status. The experimental study included 42 animals (piglets), which were divided into of tree groups, each containing 14. The animals of the control group (conventional ventilation) were ventilated with the tidal volume of 10-15 mL/kg. Tidal volume of 6 mL/kg was applied in the low tidal ventilation group, whereas the ventilation strategy in the lung protective ventilation group meant the application of a tidal volume of 6 mL/kg and the 7 mbar of positive end-expiratory pressure. Mechanical ventilation in each animal lasted for 4 hours. After conducting mechanical ventilation, samples were taken from the lung tissue, which were sent for histopathological examination. The parameters of ventilation, oxygenation and acid-base status were measured after each hour’s duration of mechanical ventilation. Application of positive end-expiratory pressure 5-10 mbar during mechanical ventilation is a safe and useful method which is not followed by the occurrence of significant abnormalities in the structure of the ventilated lung. However, a low tidal volume without positive end-expiratory pressure causes significant changes in the histological structure of healthy lungs. Positive end-expiratory pressure keeps the alveoli open throughout the respiratory cycle which allows the lungs to maintain homeostasis in terms of adequate ventilation, oxygenation and acid-base status.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wen Xu ◽  
Ruoming Tan ◽  
Jie Huang ◽  
Shuai Qin ◽  
Jing Wu ◽  
...  

This paper reports a complete case of severe acute respiratory distress syndrome (ARDS) caused by coronavirus disease 2019 (COVID-19), who presented with rapid deterioration of oxygenation during hospitalization despite escalating high-flow nasal cannulation to invasive mechanical ventilation. After inefficacy with lung-protective ventilation, positive end-expiratory pressure (PEEP) titration, prone position, we administered extracorporeal membrane oxygenation (ECMO) as a salvage respiratory support with ultra-protective ventilation for 47 days and finally discharged the patient home with a good quality of life with a Barthel Index Score of 100 after 76 days of hospitalization. The purpose of this paper is to provide a clinical reference for the management of ECMO and respiratory strategy of critical patients with COVID-19-related ARDS.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 1993
Author(s):  
Jesús Villar ◽  
Carlos Ferrando ◽  
Robert M Kacmarek

Mechanical ventilation is the standard life-support technique for patients with severe acute respiratory failure. However, some patients develop persistent and refractory hypoxemia because their lungs are so severely damaged that they are unable to respond to the application of high inspired oxygen concentration and high levels of positive end-expiratory pressure. In this article, we review current knowledge on managing persistent hypoxemia in patients with injured lungs.


Sign in / Sign up

Export Citation Format

Share Document