scholarly journals Untargeted histone profiling during naive conversion uncovers conserved modification markers between mouse and human

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura De Clerck ◽  
Jasin Taelman ◽  
Mina Popovic ◽  
Sander Willems ◽  
Margot Van der Jeught ◽  
...  

AbstractRecent progress has enabled the conversion of primed human embryonic stem cells (hESCs) to the naive state of pluripotency, resembling the well-characterized naive mouse ESCs (mESCs). However, a thorough histone epigenetic characterization of this conversion process is currently lacking, while its likeness to the mouse model has not been clearly established. Here, we profile the histone epigenome of hESCs during conversion in a time-resolved experimental design, using an untargeted mass spectrometry-based approach. In total, 23 histone post-translational modifications (hPTMs) changed significantly over time. H3K27Me3 was the most prominently increasing marker hPTM in naive hESCs. This is in line with previous reports in mouse, prompting us to compare all the shared hPTM fold changes between mouse and human, revealing a set of conserved hPTM markers for the naive state. Principally, we present the first roadmap of the changing human histone epigenome during the conversion of hESCs from the primed to the naive state. This further revealed similarities with mouse, which hint at a conserved mammalian epigenetic signature of the ground state of pluripotency.

2020 ◽  
Author(s):  
Manish Bhattacharjee ◽  
Navin Adhikari ◽  
Renu Sudhakar ◽  
Zeba Rizvi ◽  
Divya Das ◽  
...  

ABSTRACTA variety of post-translational modifications of Plasmodium falciparum proteins, including phosphorylation and ubiquitination, are shown to have key regulatory roles. The neural precursor cell expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like modifier of cullin-RING E3 ubiquitin ligases, which regulate diverse cellular processes, including the cell-cycle. Although neddylation pathway is conserved in eukaryotes, it is yet to be characterized in Plasmodium and related apicomplexan parasites. Towards studying the neddylation pathway in malaria parasites, we characterized P. falciparum NEDD8 (PfNEDD8) and identified cullins as its physiological substrates. PfNEDD8 is a 76 amino acid residue protein without the C-terminal tail, indicating that it can be readily conjugated. The wild type and mutant (Gly75Gly76 mutated to Ala75Ala76) PfNEDD8 were expressed in P. falciparum. Western blot of wild type PfNEDD8-expressing parasites indicated multiple high molecular weight conjugates, which were absent in the parasites expressing the mutant, indicating conjugation of NEDD8 to proteins through Gly76. Immunoprecipitation followed by mass spectrometry of wild type PfNEDD8-expressing parasites identified several proteins, including two putative cullins. Furthermore, we expressed PfNEDD8 in mutant S. cerevisiae strains that lacked endogenous NEDD8 (Δrub1) or NEDD8 conjugating E2 enzyme (ΔUbc12). The western blot of complemented strains and mass spectrometry of PfNEDD8 immunoprecipitate showed conjugation of PfNEDD8 to S. cerevisiae cullin cdc53, demonstrating functional conservation and cullins as the physiological substrates of PfNEDD8. The characterization of PfNEDD8 and identification of cullins as its substrates make ground for investigation of specific roles and drug target potential of neddylation pathway in malaria parasites.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 207 ◽  
Author(s):  
Stephen R. Johnson ◽  
Hillary G. Rikli

Research in toxinology has created a pharmacological paradox. With an estimated 220,000 venomous animals worldwide, the study of peptidyl toxins provides a vast number of effector molecules. However, due to the complexity of the protein-protein interactions, there are fewer than ten venom-derived molecules on the market. Structural characterization and identification of post-translational modifications are essential to develop biological lead structures into pharmaceuticals. Utilizing advancements in mass spectrometry, we have created a high definition approach that fuses conventional high-resolution MS-MS with ion mobility spectrometry (HDMSE) to elucidate these primary structure characteristics. We investigated venom from ten species of “tiger” spider (Genus: Poecilotheria) and discovered they contain isobaric conformers originating from non-enzymatic Asp isomerization. One conformer pair conserved in five of ten species examined, denominated PcaTX-1a and PcaTX-1b, was found to be a 36-residue peptide with a cysteine knot, an amidated C-terminus, and isoAsp33Asp substitution. Although the isomerization of Asp has been implicated in many pathologies, this is the first characterization of Asp isomerization in a toxin and demonstrates the isomerized product’s diminished physiological effects. This study establishes the value of a HDMSE approach to toxin screening and characterization.


2019 ◽  
Vol 34 (1) ◽  
pp. 135-146 ◽  
Author(s):  
Marcel Burger ◽  
Lyndsey Hendriks ◽  
Jérôme Kaeslin ◽  
Alexander Gundlach-Graham ◽  
Bodo Hattendorf ◽  
...  

High time resolution of TOFMS allows to study variations in ion transit times caused by collisions within the pressurized cell.


2005 ◽  
Vol 5 (3) ◽  
pp. 541-552 ◽  
Author(s):  
Débora Bonenfant ◽  
Michèle Coulot ◽  
Harry Towbin ◽  
Patrick Schindler ◽  
Jan van Oostrum

Sign in / Sign up

Export Citation Format

Share Document