scholarly journals Enhancing the differentiation of specific genotypes in Mycobacterium tuberculosis population

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shima Hadifar ◽  
Mansour Kargarpour Kamakoli ◽  
Abolfazl Fateh ◽  
Seyed Davar Siadat ◽  
Farzam Vaziri

AbstractToday, significant attention is directed towards the global lineages and sublineages of Mycobacterium tuberculosis (Mtb). NEW-1 (SIT 127) and CAS1-Delhi (SIT 26) strains are recognized as growing and circulating Mtb genotypes, especially in Asian countries. It is crucial to develop or enhance Mtb genotyping methods for a more accurate and simple differentiation of these families. We used 24-loci mycobacterial interspersed repetitive unit-variable number tandem repeat (MIRU-VNTR) typing for genotyping 217 Mtb isolates. To select the optimal MIRU-VNTR loci, we calculated the Hunter-Gaston discriminatory index (HGDI), allelic diversity, and accumulation of percentage differences (APDs) between the strains among different groups of genotypes (NEW-1 and non-NEW-1; CAS1-Delhi and non-CAS). Finally, the minimum spanning tree was constructed for clustering analysis. In the NEW-1 population, loci with APD > 60% were found to have a high discriminatory power. VNTR loci with APD > 50% showed high discrimination power for the CAS population. Our findings suggest that APDs, which are valuable for the selection of VNTR loci sets, may improve the discriminatory power of MIRU-VNTR typing for identification of Mtb genotypes in specific regions.

2011 ◽  
Vol 60 (4) ◽  
pp. 335-339 ◽  
Author(s):  
EWA SADOWY ◽  
ALEKSANDRA SIEŃKO ◽  
WALERIA HRYNIEWICZ

Enterococcus faecalis represents recently an important etiological agent of health care-associated infections (HAIs) and there is a need for evaluation and comparison of typing methods available for this microorganism. We tested multilocus VNTR (variable-number tandem repeats) analysis (MLVA) on a well-characterized collection of 153 clinical isolates of E. faecalis, corresponding to 52 multilocus sequence types and 67 pulsed-field gel electrophoresis (PFGE) profiles. MLVA showed high discriminatory power, discerning 111 different types (diversity index equal 98.9%). The concordance MLVA/MLST and MLVA/PFGE was 0.95 and 0.74, respectively. High discriminatory power of MLVA indicates its utility for local epidemiology such as outbreak investigation, and for differentiation of clones defined by other methods.


2019 ◽  
Vol 85 (6) ◽  
Author(s):  
François Caméléna ◽  
André Birgy ◽  
Yasmine Smail ◽  
Céline Courroux ◽  
Patricia Mariani-Kurkdjian ◽  
...  

ABSTRACTWe developed a multiplex PCR method based on multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) that was designed for the rapid typing ofEscherichia coliandShigellaisolates. The method amplifies seven VNTRs and does not require a sequencing capillary or fluorescent dyes. The amplification products are simply loaded on a standard agarose gel for electrophoresis, and the banding patterns are analyzed visually. We evaluated the method on 220 strains belonging to different collections: theE. colireference (ECOR) collection (n = 72), O1:K1 isolates causing neonatal meningitis (n = 38), extended-spectrum beta-lactamase-producing fecal isolates belonging to the worldwide sequence type 131 (ST131) clone (n = 38), Shiga toxin-producingE. coli(STEC) isolates of serogroups O157:H7 (n = 21) and O26 (n = 16, 8 of which belonged to an outbreak), 27Shigellaisolates (22Shigella sonneiisolates, including 5 epidemic strains), and 8 reference strains. The performances were compared to those of multilocus sequence typing (MLST), the DiversiLab automated repetitive element palindromic PCR (REP-PCR), pulsed-field gel electrophoresis (PFGE), and whole-genome sequencing (WGS). We found 66 different profiles among the isolates in the ECOR collection. Among the clonal group O1:K1 isolates, 14 different profiles were identified. For the 37 STEC isolates, we found 23 profiles, with 1 corresponding to the 8 epidemic strains. We found 19 profiles among the 27Shigellaisolates, with 1 corresponding to the epidemic strain. The method was able to recognize strains of the ST131 clone and to distinguish the O16 and O25b serogroups and identified 15 different MLVA types among them. This method allows the simple, fast, and inexpensive typing ofE. coli/Shigellaisolates that can be carried out in any laboratory equipped for molecular biology and has a discriminatory power superior to that of MLST and DiversiLab REP-PCR but slightly lower than that of PFGE.IMPORTANCEFast typing methods that can easily and accurately distinguish clonal groups and unrelated isolates are of particular interest for microbiologists confronted with outbreaks or performing epidemiological studies. Highly discriminatory universal methods, like PFGE, optical mapping, or WGS, are expensive and/or time-consuming. MLST is useful for phylogeny but is less discriminatory and requires sequencing facilities. PCR methods, which are fast and easy to perform, also have drawbacks. Random PCRs and REP-PCR are universal but lack reproducibility. Other PCR methods may lack the discriminatory power to differentiate isolates during outbreaks. MLVA combines the advantages of PCR methods with a high discriminatory power but in its standard form requires sequencing capillary electrophoresis. The method that we have developed combines the advantages of standard PCR (simple, fast, and inexpensive) with the high discriminatory power of MLVA and permits the typing of allE. coliisolates (either intestinal or extraintestinal pathogenic isolates as well as commensal isolates).


2004 ◽  
Vol 186 (16) ◽  
pp. 5496-5505 ◽  
Author(s):  
Leo M. Schouls ◽  
Han G. J. van der Heide ◽  
Luc Vauterin ◽  
Paul Vauterin ◽  
Frits R. Mooi

ABSTRACT Bordetella pertussis, the causative agent of whooping cough, has remained endemic in The Netherlands despite extensive nationwide vaccination since 1953. In the 1990s, several epidemic periods have resulted in many cases of pertussis. We have proposed that strain variation has played a major role in the upsurges of this disease in The Netherlands. Therefore, molecular characterization of strains is important in identifying the causes of pertussis epidemiology. For this reason, we have developed a multiple-locus variable-number tandem repeat analysis (MLVA) typing system for B. pertussis. By combining the MLVA profile with the allelic profile based on multiple-antigen sequence typing, we were able to further differentiate strains. The relationships between the various genotypes were visualized by constructing a minimum spanning tree. MLVA of Dutch strains of B. pertussis revealed that the genotypes of the strains isolated in the prevaccination period were diverse and clearly distinct from the strains isolated in the 1990s. Furthermore, there was a decrease in diversity in the strains from the late 1990s, with a remarkable clonal expansion that coincided with the epidemic periods. Using this genotyping, we have been able to show that B. pertussis is much more dynamic than expected.


2017 ◽  
Vol 139 ◽  
pp. 12-14 ◽  
Author(s):  
Junji Seto ◽  
Takayuki Wada ◽  
Yu Suzuki ◽  
Tatsuya Ikeda ◽  
Katsumi Mizuta ◽  
...  

2017 ◽  
Vol 56 (1) ◽  
Author(s):  
Yoshiro Murase ◽  
Kiyohiko Izumi ◽  
Akihiro Ohkado ◽  
Akio Aono ◽  
Kinuyo Chikamatsu ◽  
...  

ABSTRACT Strain genotyping based on the variable-number tandem repeat (VNTR) is widely applied for identifying the transmission of Mycobacterium tuberculosis. A consensus set of four hypervariable loci (1982, 3232, 3820, and 4120) has been proposed to improve the discrimination of Beijing lineage strains. Herein, we evaluated the utility of these four hypervariable loci for tracing local tuberculosis transmission in 981 cases over a 14-month period in Japan (2010 to 2011). We used six different VNTR systems, with or without the four hypervariable loci. Patient ages and weighted standard distances (a measure of the dispersion of genotype-clustered cases) were used as proxies for estimating local tuberculosis transmission. The highest levels of isolate discrimination were achieved with VNTR systems that incorporated the four hypervariable loci (i.e., the Japan Anti-Tuberculosis Association [JATA]18-VNTR, mycobacterial interspersed repetitive unit [MIRU]28-VNTR, and 24Beijing-VNTR). The clustering rates by JATA12-VNTR, MIRU15-VNTR, JATA15-VNTR, JATA18-VNTR, MIRU28-VNTR, and 24Beijing-VNTR systems were 52.2%, 51.0%, 39.0%, 24.1%, 23.1%, and 22.0%, respectively. As the discriminative power increased, the median weighted standard distances of the clusters tended to decrease (from 311 to 80 km, P < 0.001, Jonckheere-Terpstra trend test). Concurrently, the median ages of patients in the clusters tended to decrease (from 68 to 60 years, P < 0.001, Jonckheere-Terpstra trend test). These findings suggest that strain typing using the four hypervariable loci improves the prediction of active local tuberculosis transmission. The four-locus set can therefore contribute to the targeted control of tuberculosis in settings with high prevalence of Beijing lineage strains.


2007 ◽  
Vol 56 (8) ◽  
pp. 1052-1057 ◽  
Author(s):  
Takayuki Wada ◽  
Shinji Maeda ◽  
Atsushi Hase ◽  
Kazuo Kobayashi

Using 243 Mycobacterium tuberculosis isolates obtained in 2001 in Osaka City, Japan, the discriminatory power of variable numbers of tandem repeats (VNTRs) of 12 standard mycobacterial interspersed repetitive units (MIRUs) was assessed. The biggest cluster defined by MIRU-VNTRs consisted of 57 (23.5 %) isolates and they belonged to the Beijing family based on spoligotyping. When additional VNTR loci were included in the MIRU-VNTR analysis, the 57 originally clustered strains were further differentiated by the addition of Queen's University Belfast (QUB)-VNTRs, but not exact tandem repeat-VNTR. The allelic diversity of additional VNTR loci such as VNTR 3232 (QUB-3232), VNTR 2163a (QUB-11a), VNTR 2163b (QUB-11b) and VNTR 1982 (QUB-18) was high in the 57 strains. When the 243 M. tuberculosis isolates were analysed using 16-locus VNTR (the 12 standard MIRUs and the 4 QUB loci) and IS6110 RFLP, the respective Hunter–Gaston discriminatory indexes were 0.9966 and 0.9971. The discrimination power of 16-locus VNTR was equal to that of IS6110 RFLP analysis. If appropriate loci are added to the standard MIRU analysis, VNTR genotyping could be a valuable tool for strain typing and epidemiological research of M. tuberculosis in Japan.


Sign in / Sign up

Export Citation Format

Share Document