scholarly journals Author Correction: Structure of full-length wild-type human phenylalanine hydroxylase by small angle X-ray scattering reveals substrate-induced conformational stability

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Catarina S. Tomé ◽  
Raquel R. Lopes ◽  
Pedro M. F. Sousa ◽  
Mariana P. Amaro ◽  
João Leandro ◽  
...  

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Catarina S. Tomé ◽  
Raquel R. Lopes ◽  
Pedro M. F. Sousa ◽  
Mariana P. Amaro ◽  
João Leandro ◽  
...  

Abstract Human phenylalanine hydroxylase (hPAH) hydroxylates l-phenylalanine (l-Phe) to l-tyrosine, a precursor for neurotransmitter biosynthesis. Phenylketonuria (PKU), caused by mutations in PAH that impair PAH function, leads to neurological impairment when untreated. Understanding the hPAH structural and regulatory properties is essential to outline PKU pathophysiological mechanisms. Each hPAH monomer comprises an N-terminal regulatory, a central catalytic and a C-terminal oligomerisation domain. To maintain physiological l-Phe levels, hPAH employs complex regulatory mechanisms. Resting PAH adopts an auto-inhibited conformation where regulatory domains block access to the active site. l-Phe-mediated allosteric activation induces a repositioning of the regulatory domains. Since a structure of activated wild-type hPAH is lacking, we addressed hPAH l-Phe-mediated conformational changes and report the first solution structure of the allosterically activated state. Our solution structures obtained by small-angle X-ray scattering support a tetramer with distorted P222 symmetry, where catalytic and oligomerisation domains form a core from which regulatory domains protrude, positioning themselves close to the active site entrance in the absence of l-Phe. Binding of l-Phe induces a large movement and dimerisation of regulatory domains, exposing the active site. Activated hPAH is more resistant to proteolytic cleavage and thermal denaturation, suggesting that the association of regulatory domains stabilises hPAH.


2002 ◽  
Vol 277 (51) ◽  
pp. 49755-49760 ◽  
Author(s):  
Robin S. Chan ◽  
Jessica B. Sakash ◽  
Christine P. Macol ◽  
Jay M. West ◽  
Hiro Tsuruta ◽  
...  

Homotropic cooperativity inEscherichia coliaspartate transcarbamoylase results from the substrate-induced transition from the T to the R state. These two alternate states are stabilized by a series of interdomain and intersubunit interactions. The salt link between Lys-143 of the regulatory chain and Asp-236 of the catalytic chain is only observed in the T state. When Asp-236 is replaced by alanine the resulting enzyme exhibits full activity, enhanced affinity for aspartate, no cooperativity, and no heterotropic interactions. These characteristics are consistent with an enzyme locked in the functional R state. Using small angle x-ray scattering, the structural consequences of the D236A mutant were characterized. The unliganded D236A holoenzyme appears to be in a new structural state that is neither T, R, nor a mixture of T and R states. The structure of the native D236A holoenzyme is similar to that previously reported for another mutant holoenzyme (E239Q) that also lacks intersubunit interactions. A hybrid version of aspartate transcarbamoylase in which one catalytic subunit was wild-type and the other had the D236A mutation was also investigated. The hybrid holoenzyme, with three of the six possible interactions involving Asp-236, exhibited homotropic cooperativity, and heterotropic interactions consistent with an enzyme with both T and R functional states. Small angle x-ray scattering analysis of the unligated hybrid indicated that the enzyme was in a new structural state more similar to the T than to the R state of the wild-type enzyme. These data suggest that three of the six intersubunit interactions involving D236A are sufficient to stabilize a T-like state of the enzyme and allow for an allosteric transition.


2011 ◽  
Vol 48 (3) ◽  
pp. 398-402 ◽  
Author(s):  
Patricia Targon Campana ◽  
Leandro Ramos Souza Barbosa ◽  
Rosangela Itri

2020 ◽  
Vol 21 (18) ◽  
pp. 6638
Author(s):  
Masayoshi Nakasako ◽  
Mao Oide ◽  
Yuki Takayama ◽  
Tomotaka Oroguchi ◽  
Koji Okajima

Phototropin2 (phot2) is a blue-light (BL) receptor protein that regulates the BL-dependent activities of plants for efficient photosynthesis. Phot2 is composed of two light-oxygen-voltage sensing domains (LOV1 and LOV2) to absorb BL, and a kinase domain. Photo-activated LOV domains, especially LOV2, play a major role in photo-dependent increase in the phosphorylation activity of the kinase domain. The atomic details of the overall structure of phot2 and the intramolecular mechanism to convert BL energy to a phosphorylation signal remain unknown. We performed structural studies on the LOV fragments LOV1, LOV2, LOV2-linker, and LOV2-kinase, and full-length phot2, using small-angle X-ray scattering (SAXS). The aim of the study was to understand structural changes under BL irradiation and discuss the molecular mechanism that enhance the phosphorylation activity under BL. SAXS is a suitable technique for visualizing molecular structures of proteins in solution at low resolution and is advantageous for monitoring their structural changes in the presence of external physical and/or chemical stimuli. Structural parameters and molecular models of the recombinant specimens were obtained from SAXS profiles in the dark, under BL irradiation, and after dark reversion. LOV1, LOV2, and LOV2-linker fragments displayed minimal structural changes. However, BL-induced rearrangements of functional domains were noted for LOV2-kinase and full-length phot2. Based on the molecular model together with the absorption measurements and biochemical assays, we discuss the intramolecular interactions and domain motions necessary for BL-enhanced phosphorylation activity of phot2.


2010 ◽  
Vol 78 (10) ◽  
pp. 2295-2305 ◽  
Author(s):  
Yuichiro Kezuka ◽  
Masaki Kojima ◽  
Ryoji Mizuno ◽  
Kazushi Suzuki ◽  
Takeshi Watanabe ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 254-254
Author(s):  
Jian Zhu ◽  
Joshua Muia ◽  
Louis Deforche ◽  
Karen Vanhoorelbeke ◽  
Niraj H. Tolia ◽  
...  

Abstract Introduction: ADAMTS13 is a multidomain protein with metalloprotease (M), disintegrin-like (D), thrombospondin-1 (T), Cys-rich (C) and spacer (S) domains, followed by 7 T domains and 2 CUB domains. ADAMTS13 cleaves the cryptic Tyr1605-Met1606 bond in the A2 domain of von Willebrand factor (VWF), which inhibits the growth of platelet-rich thrombi. When subjected to tensile stress in solution, bound to platelets, or on endothelial cell surfaces, VWF interacts with multiple exosites on ADAMTS13, changing the conformation of both proteins. These close contacts enhance the specific interaction between ADAMTS13 and VWF in vivo. Interactions between VWF and proximal MDTCS domains of ADAMTS13 have been investigated extensively. ADAMTS13 distal domains T8-CUB2 are required to bind the D4 domain of VWF, and the CUB domains promote the cleavage of platelet-decorated VWF strings. Using mutagenesis, small-angle X-ray scattering (SAXS) and enzyme kinetics, we have shown that ADAMTS13 adopts a folded conformation with distal T8-CUB2 domains close to the proximal MDTCS domains and a hinge point between the T4 and T5 domains. We have used internal deletions of T domains to identify a possible "minimal" structure for a functional and stably folded ADAMTS13. Methods: Recombinant human hADAMTS13, pigeon pADAMTS13, and various T domain deletion mutations were produced in T-Rex 293 cell lines and purified to homogeneity. Similar inactive variants of each protein were prepared with the mutation E225Q, which abolishes catalytic activity but does not affect protein folding. SAXS data were collected at the SIBYLS beamline (Lawrence Berkeley National Laboratory) for ADAMTS13 and deletion variants. The radius of gyration (Rg) and maximum particle size (Dmax) were calculated from scattering profiles using DATGNOM. Ab initio envelopes were generated from scattering profiles using DAMMIN. A molecular model of ADAMTS13 was built from crystal structures of ADAMTS4 MD domains (2rjp) and ADAMTS13 DTCS domains (3ghm), and using HHpred to model distal T domains, CUB domains, and linkers after T4 and T8. ADAMTS13 activity assays were performed at pH 6.0 and pH 7.4 with the fluorogenic substrate FRETS-rVWF71. Monoclonal antibodies (Mabs) against different distal domains of ADAMTS13 and recombinant VWF D4 domain were added to assess allosteric activation. Results: Rg and Dmax of ADAMTS13 variants are shown in Table 1. For Del4L, with deletion of linker region between T4 and T5, values of Rg and Dmax are ~5% smaller than for full length ADAMTS13. Deletion of both T4 and the linker region (Del4pL), reduced Rg and Dmax ~10%. Deletions of distal domains (Del7, Del8, Del8L, and Del8pL) that are spatially close to the proximal domains increased Rg and Dmax ~14%, which is consistent with partial unfolding of the condensed full length ADAMTS13 structure. Del2to8, which lacks all distal T domains between S and CUBs, aggregated in solution. Del2to7, which retains only T8, has Rg and Dmax 15% and 17% smaller than ADAMTS13, respectively. The kcat values for all variants at pH 7.4 are consistent with autoinhibition of the proximal MDTCS domains by any remaining distal domains. The additional of Mabs recognizing T7, T8 and CUBs slightly (~1.5 fold) activated individual deletion mutants. Del2to7, Del2to8, and Del3to6 had similar activities when compared with ADAMTS13. Though Del2to7 and Del3to6 could be activated by Mabs ~3 fold, only Del3to6 could be activated slightly ~1.3-fold by D4 domain, compared to 1.8-fold activation of hADAMTS13. pADAMTS13 is structurally similar to human Del3to6, and was activated by D4 domain ~4 fold but not by Mabs. Fitting to the ab initio envelopes show a folded conformation for hADAMTS13, Del7, Del8 and Del8L (Figure 1), consistent with a hinge in the flexible linker after T4. pADAMTS13 and Del2to7 had more compact envelopes, consistent with removal of most of the folded segment present in full length hADAMTS13. Conclusions: Deletion of individual distal T domains does not relieve the autoinhibition of ADAMTS13. Del3to6 is the only human deletion mutant examined that can be activated by both Mabs and VWF D4 domain, similar to hADAMTS13. pADAMTS13 is structurally similar to Del3to6, retains normal activation by VWF D4, and shows a SAXS envelope consistent with a truncated version of hADAMTS13. Our findings suggest that Del3to6 and pADAMTS13 represent the "minimal" structure of allosterically-regulated, functional ADAMTS13. Disclosures Sadler: Ablynx: Consultancy; 23andMe: Consultancy; BioMarin: Consultancy.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 564
Author(s):  
Liubov A. Dadinova ◽  
Ekaterina Yu. Soshinskaia ◽  
Cy M. Jeffries ◽  
Dmitri I. Svergun ◽  
Eleonora V. Shtykova

Quaternary structure of CBS-pyrophosphatases (CBS-PPases), which belong to the PPases of family II, plays an important role in their function ensuring cooperative behavior of the enzymes. Despite an intensive research, high resolution structures of the full-length CBS-PPases are not yet available making it difficult to determine the signal transmission path from the regulatory to the active center. In the present work, small-angle X-ray scattering (SAXS) combined with size-exclusion chromatography was applied to determine the solution structures of the full-length wild-type CBS-PPases from three different bacterial species. Previously, in the absence of an experimentally determined full-length CBS-PPase structure, a homodimeric model of the enzyme based on known crystal structures of the CBS domain and family II PPase without this domain has been proposed. Our SAXS analyses demonstrate, for the first time, the existence of stable tetramers in solution for all studied CBS-PPases from different sources. Our findings show that further studies are required to establish the functional properties of these enzymes. This is important not only to enhance our understanding of the relation between CBS-PPases structure and function under normal conditions but also because some human pathogens harbor this class of enzymes.


2016 ◽  
Vol 138 (20) ◽  
pp. 6506-6516 ◽  
Author(s):  
Steve P. Meisburger ◽  
Alexander B. Taylor ◽  
Crystal A. Khan ◽  
Shengnan Zhang ◽  
Paul F. Fitzpatrick ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document