scholarly journals Chaotic Dynamics Enhance the Sensitivity of Inner Ear Hair Cells

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Justin Faber ◽  
Dolores Bozovic

AbstractHair cells of the auditory and vestibular systems are capable of detecting sounds that induce sub-nanometer vibrations of the hair bundle, below the stochastic noise levels of the surrounding fluid. Furthermore, the auditory system exhibits a highly rapid response time, in the sub-millisecond regime. We propose that chaotic dynamics enhance the sensitivity and temporal resolution of the hair bundle response, and we provide experimental and theoretical evidence for this effect. We use the Kolmogorov entropy to measure the degree of chaos in the system and the transfer entropy to quantify the amount of stimulus information captured by the detector. By varying the viscosity and ionic composition of the surrounding fluid, we are able to experimentally modulate the degree of chaos observed in the hair bundle dynamics in vitro. We consistently find that the hair bundle is most sensitive to a stimulus of small amplitude when it is poised in the weakly chaotic regime. Further, we show that the response time to a force step decreases with increasing levels of chaos. These results agree well with our numerical simulations of a chaotic Hopf oscillator and suggest that chaos may be responsible for the high sensitivity and rapid temporal response of hair cells.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vincent Michel ◽  
Elise Pepermans ◽  
Jacques Boutet de Monvel ◽  
Patrick England ◽  
Sylvie Nouaille ◽  
...  

Abstract The hair bundle of cochlear hair cells is the site of auditory mechanoelectrical transduction. It is formed by three rows of stiff microvilli-like protrusions of graduated heights, the short, middle-sized, and tall stereocilia. In developing and mature sensory hair cells, stereocilia are connected to each other by various types of fibrous links. Two unconventional cadherins, protocadherin-15 (PCDH15) and cadherin-23 (CDH23), form the tip-links, whose tension gates the hair cell mechanoelectrical transduction channels. These proteins also form transient lateral links connecting neighboring stereocilia during hair bundle morphogenesis. The proteins involved in anchoring these diverse links to the stereocilia dense actin cytoskeleton remain largely unknown. We show that the long isoform of whirlin (L-whirlin), a PDZ domain-containing submembrane scaffold protein, is present at the tips of the tall stereocilia in mature hair cells, together with PCDH15 isoforms CD1 and CD2; L-whirlin localization to the ankle-link region in developing hair bundles moreover depends on the presence of PCDH15-CD1 also localizing there. We further demonstrate that L-whirlin binds to PCDH15 and CDH23 with moderate-to-high affinities in vitro. From these results, we suggest that L-whirlin is part of the molecular complexes bridging PCDH15-, and possibly CDH23-containing lateral links to the cytoskeleton in immature and mature stereocilia.


Author(s):  
Damián Muruzabal ◽  
Julen Sanz-Serrano ◽  
Sylvie Sauvaigo ◽  
Bertrand Treillard ◽  
Ann-Karin Olsen ◽  
...  

AbstractMechanistic toxicology is gaining weight for human health risk assessment. Different mechanistic assays are available, such as the comet assay, which detects DNA damage at the level of individual cells. However, the conventional alkaline version only detects strand breaks and alkali-labile sites. We have validated two modifications of the in vitro assay to generate mechanistic information: (1) use of DNA-repair enzymes (i.e., formamidopyrimidine DNA glycosylase, endonuclease III, human 8-oxoguanine DNA glycosylase I and human alkyladenine DNA glycosylase) for detection of oxidized and alkylated bases as well as (2) a modification for detecting cross-links. Seven genotoxicants with different mechanisms of action (potassium bromate, methyl methanesulfonate, ethyl methanesulfonate, hydrogen peroxide, cisplatin, mitomycin C, and benzo[a]pyrene diol epoxide), as well as a non-genotoxic compound (dimethyl sulfoxide) and a cytotoxic compound (Triton X-100) were tested on TK-6 cells. We were able to detect with high sensitivity and clearly differentiate oxidizing, alkylating and cross-linking agents. These modifications of the comet assay significantly increase its sensitivity and its specificity towards DNA lesions, providing mechanistic information regarding the type of damage.


Author(s):  
Kellisha Harley ◽  
Sarah Bissonnette ◽  
Rosanna Inzitari ◽  
Karen Schulz ◽  
Fred S. Apple ◽  
...  

Abstract Objectives This study compared the independent and combined effects of hemolysis and biotin on cardiac troponin measurements across nine high-sensitivity cardiac troponin (hs-cTn) assays. Methods Parallel cTn measurements were made in pooled lithium heparin plasma spiked with hemolysate and/or biotin using nine hs-cTn assays: Abbott Alinity, Abbott ARCHITECT i2000, Beckman Access 2, Ortho VITROS XT 7600, Siemens Atellica, Siemens Centaur, Siemens Dimension EXL cTnI, and two Roche Cobas e 411 Elecsys Troponin T-hs cTnT assays (outside US versions, with and without increased biotin tolerance). Absolute and percent cTn recovery relative to two baseline concentrations were determined in spiked samples and compared to manufacturer’s claims. Results All assays except the Ortho VITROS XT 7600 showed hemolysis and biotin interference thresholds equivalent to or greater than manufacturer’s claims. While imprecision confounded analysis of Ortho VITROS XT 7600 data, evidence of biotin interference was lacking. Increasing biotin concentration led to decreasing cTn recovery in three assays, specifically both Roche Cobas e 411 Elecsys Troponin T-hs assays and the Siemens Dimension EXL. While one of the Roche assays was the most susceptible to biotin among the nine studied, a new version showed reduced biotin interference by approximately 100-fold compared to its predecessor. Increasing hemolysis also generally led to decreasing cTn recovery for susceptible assays, specifically the Beckman Access 2, Ortho VITROS XT 7600, and both Roche Cobas e 411 Elecsys assays. Equivalent biotin and hemolysis interference thresholds were observed at the two cTn concentrations considered for all but two assays (Beckman Access 2 and Ortho VITROS XT 7600). When biotin and hemolysis were present in combination, biotin interference thresholds decreased with increasing hemolysis for two susceptible assays (Roche Cobas e 411 Elecsys and Siemens Dimension EXL). Conclusions Both Roche Cobas e 411 Elecsys as well as Ortho VITROS XT assays were susceptible to interference from in vitro hemolysis at levels routinely encountered in clinical laboratory samples (0–3 g/L free hemoglobin), leading to falsely low cTn recovery up to 3 ng/L or 13%. While most assays are not susceptible to biotin at levels expected with over-the-counter supplementation, severely reduced cTn recovery is possible at biotin levels of 10–2000 ng/mL (41–8,180 nmol/L) for some assays. Due to potential additive effects, analytical interferences should not be considered in isolation.


2021 ◽  
Vol 22 (7) ◽  
pp. 3691
Author(s):  
Oliver Schmutzler ◽  
Sebastian Graf ◽  
Nils Behm ◽  
Wael Y. Mansour ◽  
Florian Blumendorf ◽  
...  

Quantitative cellular in vitro nanoparticle uptake measurements are possible with a large number of different techniques, however, all have their respective restrictions. Here, we demonstrate the application of synchrotron-based X-ray fluorescence imaging (XFI) on prostate tumor cells, which have internalized differently functionalized gold nanoparticles. Total nanoparticle uptake on the order of a few hundred picograms could be conveniently observed with microsamples consisting of only a few hundreds of cells. A comparison with mass spectroscopy quantification is provided, experimental results are both supported and sensitivity limits of this XFI approach extrapolated by Monte-Carlo simulations, yielding a minimum detectable nanoparticle mass of just 5 pg. This study demonstrates the high sensitivity level of XFI, allowing non-destructive uptake measurements with very small microsamples within just seconds of irradiation time.


2020 ◽  
Vol 39 (1) ◽  
pp. 209-221
Author(s):  
Jiafeng Wan ◽  
Xiaoyuan Zhang ◽  
Kai Zhang ◽  
Zhiqiang Su

Abstract In recent years, nanomaterials have attracted lots of attention from researchers due to their unique properties. Nanometer fluorescent materials, such as organic dyes, semiconductor quantum dots (QDs), metal nano-clusters (MNCs), carbon dots (CDs), etc., are widely used in biological imaging due to their high sensitivity, short response time, and excellent accuracy. Nanometer fluorescent probes can not only perform in vitro imaging of organisms but also achieve in vivo imaging. This provides medical staff with great convenience in cancer treatment. Combined with contemporary medical methods, faster and more effective treatment of cancer is achievable. This article explains the response mechanism of three-nanometer fluorescent probes: the principle of induced electron transfer (PET), the principle of fluorescence resonance energy transfer (FRET), and the principle of intramolecular charge transfer (ICT), showing the semiconductor QDs, precious MNCs, and CDs. The excellent performance of the three kinds of nano fluorescent materials in biological imaging is highlighted, and the application of these three kinds of nano fluorescent probes in targeted biological imaging is also introduced. Nanometer fluorescent materials will show their significance in the field of biomedicine.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2157-2169 ◽  
Author(s):  
Sudarson Sundarrajan ◽  
Junjappa Raghupatil ◽  
Aradhana Vipra ◽  
Nagalakshmi Narasimhaswamy ◽  
Sanjeev Saravanan ◽  
...  

P128 is an anti-staphylococcal protein consisting of the Staphylococcus aureus phage-K-derived tail-associated muralytic enzyme (TAME) catalytic domain (Lys16) fused with the cell-wall-binding SH3b domain of lysostaphin. In order to understand the mechanism of action and emergence of resistance to P128, we isolated mutants of Staphylococcus spp., including meticillin-resistant Staphylococcus aureus (MRSA), resistant to P128. In addition to P128, the mutants also showed resistance to Lys16, the catalytic domain of P128. The mutants showed loss of fitness as shown by reduced rate of growth in vitro. One of the mutants tested was found to show reduced virulence in animal models of S. aureus septicaemia suggesting loss of fitness in vivo as well. Analysis of the antibiotic sensitivity pattern showed that the mutants derived from MRSA strains had become sensitive to meticillin and other β-lactams. Interestingly, the mutant cells were resistant to the lytic action of phage K, although the phage was able to adsorb to these cells. Sequencing of the femA gene of three P128-resistant mutants showed either a truncation or deletion in femA, suggesting that improper cross-bridge formation in S. aureus could be causing resistance to P128. Using glutathione S-transferase (GST) fusion peptides as substrates it was found that both P128 and Lys16 were capable of cleaving a pentaglycine sequence, suggesting that P128 might be killing S. aureus by cleaving the pentaglycine cross-bridge of peptidoglycan. Moreover, peptides corresponding to the reported cross-bridge of Staphylococcus haemolyticus (GGSGG, AGSGG), which were not cleaved by lysostaphin, were cleaved efficiently by P128. This was also reflected in high sensitivity of S. haemolyticus to P128. This showed that in spite of sharing a common mechanism of action with lysostaphin, P128 has unique properties, which allow it to act on certain lysostaphin-resistant Staphylococcus strains.


Neuroreport ◽  
2002 ◽  
Vol 13 (16) ◽  
pp. 2139-2142 ◽  
Author(s):  
Sophie Gaboyard ◽  
Marie-Pierre Blanchard ◽  
C??cile Travo ◽  
Michel Viso ◽  
Alain Sans ◽  
...  

1993 ◽  
Vol 330 ◽  
Author(s):  
John Kasianowicz ◽  
Barbara Walker ◽  
Musti Krishnasastry ◽  
Hagan Bayley

ABSTRACTWe are adapting proteins that form pores in lipid bilayers for use as components of biosensors. Specifically, we have produced genetically engineered variants of the α hemolysin (αHL) fromStaphylococcusaureus with properties that are sensitive to low concentrations of divalent cations. For example, the pore-forming activity of one mutant (αHL-H5: residues 130–134 inclusive replaced with histidine) is inhibited by Zn2+at concentrations as low as 1 μM, as judged by the reduction in its ability to lyse rabbit red blood cells and to increase the conductance of planar lipid bilayer membranes. When αHL-H5 is added to the aqueous phase bathing one side of a planar membrane, the subsequent addition of 100 μM Zn2+to either side blocks the pores that form. This result suggests that at least part of the mutated region lines the channel lumen. Ca2+and Mg2+do not block the channel and therefore the H5 mutation confers a degree of analyte specificity to the αHL pore. The results suggest that genetically engineered pores have great promise for the rapid and sensitive detection of metal cations and we discuss the merits and potential limitations for their use in this application. Specifically, we examine the issues of selectivity, sensitivity, response time, dynamic range and longevity. Some of these properties are interdependent. For example, the goals of high sensitivity and rapid response time can be in conflict.


1982 ◽  
Vol 99 (1) ◽  
pp. 447-467
Author(s):  
MICHÈLE G. WHEATLY ◽  
B. R. MCMAHON

The effect of 48 h of hypersaline exposure (25, 50 and 75% SW) on haemocyanin oxygenation properties in the euryhaline crayfish Pacifastacus leniusculus was investigated in vitro and in vivo. In vitro significant increases in affinity and cooperativity were measured, although the magnitude of the Bohr shift was unaffected. In vitro dialysis of haemolymph against physiological salines of variable ionic composition proved that these changes were only partly attributable to altered levels of haemolymph ions, implicating the existence of modulators other than H+ and inorganic ions, the possible identities of which are discussed. Significant depressions of both pre- and postbranchial oxygen tensions (Pv, Ov, O2 and Pa, Oa, O2) were observed, but O2 delivery was maintained by utilization of the venous reserve and by an increase in haemocyanin O2 affinity. This occurred despite a concomitant acidosis whose effect on O2 affinity was directly opposed by the ‘salt’ effect. Under hypersaline conditions, haemocyanin played an increasingly important role in O2 delivery in vivo. Despite a reduction in the concentration of combined O2 at complete saturation of the pigment (CmaxHCyOHCyO2). indicating lowered haemocyanin concentration, compensatory changes in O2-binding and cardiac output precluded an impairment to O2 transfer. Equilibration at the tissues (Et,Ot,O2) in FW was less effective than at the gills (Eb,Ob,O2 but progressively improved with hypersaline exposure reversing this trend. Although effects of increased salinity on O2 equilibrium characteristics were qualitatively similar in vivo and in vitro, some interesting quantitative differences are discussed.


Sign in / Sign up

Export Citation Format

Share Document