scholarly journals A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mojtaba Mansour Abadi ◽  
Mitchell A. Cox ◽  
Rakan E. Alsaigh ◽  
Shaun Viola ◽  
Andrew Forbes ◽  
...  

AbstractFree-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m.

2019 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Yawar Wani ◽  
Hitesh Pathak ◽  
Karamjit Kaur ◽  
Anil Kumar

AbstractFree space optical communication systems (FSO’s) have surfaced as admired means of communication in the past few years. High speed of operation, low bandwidth requirements and system reliability are the major factors responsible for their wide range of applications. These communication systems use air as a medium of transmission. Since there is no component like fiber or cable, but air is only medium, the variations in atmospheric conditions play a vital role in performance of these networks. The reason behind is that the conditions like presence of humidity, haze, snowfall, rain, dust or smoke changes the attenuation coefficient of medium. The raised attenuation levels results in increased losses and need to be carefully monitored. The present work analyzes the influence of rain on the performance of FSO network in terms of quality of transmission. The paper discusses the impact of rainfall on attenuation coefficient of air. Then impact of this attenuation on network transmission is presented in terms of BER and Q-factor. In order to demonstrate the impact, BER and Q-value is calculated for 10 Gbps FSO link for clear weather and rainfall conditions.


2011 ◽  
Vol 5 (5) ◽  
pp. 356
Author(s):  
P. Liu ◽  
K. Kazaura ◽  
P. Dat ◽  
K. Wakamori ◽  
M. Matsumoto

2018 ◽  
Vol 10 (6) ◽  
pp. 1-7 ◽  
Author(s):  
Xu-Hong Huang ◽  
Chung-Yi Li ◽  
Hai-Han Lu ◽  
Chung-Wei Su ◽  
You-Ruei Wu ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 179
Author(s):  
Magdalena Garlinska ◽  
Agnieszka Pregowska ◽  
Karol Masztalerz ◽  
Magdalena Osial

Fast communication is of high importance. Recently, increased data demand and crowded radio frequency spectrum have become crucial issues. Free-Space Optical Communication (FSOC) has diametrically changed the way people exchange information. As an alternative to wire communication systems, it allows efficient voice, video, and data transmission using a medium like air. Due to its large bandwidth, FSOC can be used in various applications and has therefore become an important part of our everyday life. The main advantages of FSOC are a high speed, cost savings, compact structures, low power, energy efficiency, a maximal transfer capacity, and applicability. The rapid development of the high-speed connection technology allows one to reduce the repair downtime and gives the ability to quickly establish a backup network in an emergency. Unfortunately, FSOC is susceptible to disruption due to atmospheric conditions or direct sunlight. Here, we briefly discuss Free-Space Optical Communication from mirrors and optical telegraphs to modern wireless systems and outline the future development directions of optical communication.


Sign in / Sign up

Export Citation Format

Share Document