scholarly journals The phosphatidylcholine transfer protein StarD7 is important for myogenic differentiation in mouse myoblast C2C12 cells and human primary skeletal myoblasts

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yasuhiro Horibata ◽  
Satomi Mitsuhashi ◽  
Hiroaki Shimizu ◽  
Sho Maejima ◽  
Hirotaka Sakamoto ◽  
...  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Naoki Katase ◽  
Kumiko Terada ◽  
Takahiro Suzuki ◽  
Shin-ichiro Nishimatsu ◽  
Tsutomu Nohno

2015 ◽  
Vol 16 (1) ◽  
Author(s):  
Naoki Katase ◽  
Kumiko Terada ◽  
Takahiro Suzuki ◽  
Shin-ichiro Nishimatsu ◽  
Tsutomu Nohno

2003 ◽  
Vol 23 (13) ◽  
pp. 4542-4558 ◽  
Author(s):  
Philippe Coulombe ◽  
Geneviève Rodier ◽  
Stéphane Pelletier ◽  
Johanne Pellerin ◽  
Sylvain Meloche

ABSTRACT Mitogen-activated protein (MAP) kinases are stable enzymes that are mainly regulated by phosphorylation and subcellular targeting. Here we report that extracellular signal-regulated kinase 3 (ERK3), unlike other MAP kinases, is an unstable protein that is constitutively degraded in proliferating cells with a half-life of 30 min. The proteolysis of ERK3 is executed by the proteasome and requires ubiquitination of the protein. Contrary to other protein kinases, the catalytic activity of ERK3 is not responsible for its short half-life. Instead, analysis of ERK1/ERK3 chimeras revealed the presence of two destabilization regions (NDR1 and -2) in the N-terminal lobe of the ERK3 kinase domain that are both necessary and sufficient to target ERK3 and heterologous proteins for proteasomal degradation. To assess the physiological relevance of the rapid turnover of ERK3, we monitored the expression of the kinase in different cellular models of differentiation. We observed that ERK3 markedly accumulates during differentiation of PC12 and C2C12 cells into the neuronal and muscle lineage, respectively. The accumulation of ERK3 during myogenic differentiation is associated with the time-dependent stabilization of the protein. Terminal skeletal muscle differentiation is accompanied by cell cycle withdrawal. Interestingly, we found that expression of stabilized forms of ERK3 causes G1 arrest in NIH 3T3 cells. We propose that ERK3 biological activity is regulated by its cellular abundance through the control of protein stability.


Author(s):  
Guang-Zhen Jin

Abstract Among many factors of controlling stem cell differentiation, the key transcription factor upregulation via physical force is a good strategy on the lineage-specific differentiation of stem cells. The study aimed to compare growth and myogenic potentials between the parental cells (PCs) and the 1-day-old C2C12 spheroid-derived cells (SDCs) in two-dimensional (2D) and three-dimensional (3D) culture conditions through examination of the cell proliferation and the expression of myogenic genes. The data showed that 1-day-old spheroids had more intense expression of MyoD gene with respect to the PCs. The proliferation of the SDCs significantly higher than the PCs in a time dependent manner. The SDCs had also significantly higher myogenic potential than the PCs in 2D and 3D culture conditions. The results suggest that MyoD gene upregulation through cell-cell contacts is the good approach for preparation of seed cells in muscle tissue engineering.


2013 ◽  
Vol 304 (2) ◽  
pp. C128-C136 ◽  
Author(s):  
Miriam Hoene ◽  
Heike Runge ◽  
Hans Ulrich Häring ◽  
Erwin D. Schleicher ◽  
Cora Weigert

Myogenic differentiation of skeletal muscle cells is characterized by a sequence of events that include activation of signal transducer and activator of transcription 3 (STAT3) and enhanced expression of its target gene Socs3. Autocrine effects of IL-6 may contribute to the activation of the STAT3-Socs3 cascade and thus to myogenic differentiation. The importance of IL-6 and STAT3 for the differentiation process was studied in C2C12 cells and in primary mouse wild-type and IL-6−/− skeletal muscle cells. In differentiating C2C12 myoblasts, the upregulation of IL-6 mRNA expression and protein secretion started after increased phosphorylation of STAT3 on tyrosine 705 and increased mRNA expression of Socs3 was observed. Knockdown of STAT3 and IL-6 mRNA in differentiating C2C12 myoblasts impaired the expression of the myogenic markers myogenin and MyHC IIb and subsequently myotube fusion. However, the knockdown of IL-6 did not prevent the induction of STAT3 tyrosine phosphorylation. The IL-6-independent activation of STAT3 was verified in differentiating primary IL-6−/− myoblasts. The phosphorylation of STAT3 and the expression levels of STAT3, Socs3, and myogenin during differentiation were comparable in the primary myoblasts independent of the genotype. However, IL-6−/− cells failed to induce MyHC IIb expression to the same level as in wild-type cells and showed reduced myotube formation. Supplementation of IL-6 could partially restore the fusion of IL-6−/− cells. These data demonstrate that IL-6 depletion during myogenic differentiation does not reduce the activation of the STAT3-Socs3 cascade, while IL-6 and STAT3 are both necessary to promote myotube fusion.


Sign in / Sign up

Export Citation Format

Share Document