scholarly journals Short-term flooding increases CH4 and N2O emissions from trees in a riparian forest soil-stem continuum

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas Schindler ◽  
Ülo Mander ◽  
Katerina Machacova ◽  
Mikk Espenberg ◽  
Dmitrii Krasnov ◽  
...  
2022 ◽  
Vol 294 ◽  
pp. 118637
Author(s):  
Giuditta Bonetti ◽  
Katy E. Limpert ◽  
Kasper Elgetti Brodersen ◽  
Stacey M. Trevathan-Tackett ◽  
Paul E. Carnell ◽  
...  

2009 ◽  
Vol 167 (1-4) ◽  
pp. 545-558 ◽  
Author(s):  
Recep Kulcu ◽  
Kamil Ekinci ◽  
Fatih Evrendilek ◽  
Can Ertekin

2018 ◽  
Vol 16 (1) ◽  
pp. e0601 ◽  
Author(s):  
José D. Jiménez-Calderón ◽  
Adela Martínez-Fernández ◽  
Fernando Prospero-Bernal ◽  
José Velarde-Guillén ◽  
Carlos M. Arriaga-Jordán ◽  
...  

This study evaluated the effect of organic or chemical fertilization of maize on cow performance, economic outcomes, and greenhouse gas emission. Each type of maize silage according its different fertilization was used in two rations offered to two different groups of nine Friesian-Holstein cows throughout 4 months. The production cost of the maize silage was 8.8% lower for organic than for chemical fertilization. Both silages had similar nutritive value, except a higher concentration of starch in maize with organic fertilization, which allowed a reduction in the proportion of concentrate in the ration, saving 25.3 eurocents per cow in the daily ration, generating a positive balance of 21.8 eurocents per cow and day. The milk yield and composition were unaffected depending on the type of fertilization, whereas the estimation of CH4 and N2O emissions with chemical fertilization was higher than emissions with organic fertilization. As a result, it is possible to increase the sustainability and profitability of dairy production with reuse and recycling of manure.


2016 ◽  
Author(s):  
Stephanie K. Jones ◽  
Carole Helfter ◽  
Margaret Anderson ◽  
Mhairi Coyle ◽  
Claire Campbell ◽  
...  

Abstract. Intensively managed grazed grasslands in temperate climates are globally important environments for the exchange of the greenhouse gases (GHGs) carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). We assessed the N and C budget of a mostly grazed, occasionally cut, and fertilized grassland in SE Scotland by measuring or modelling all relevant imports and exports to the field as well as changes in soil C and N pools over time. The N budget was dominated by import from inorganic and organic fertilisers (21.9 g N m2 yr−1) and losses from leaching (5.3 g N m2 yr−1), N2 emissions and NOx and NH3 volatilisation (6.4 g N m2 yr−1). The efficiency of N use by animal products (meat and wool) averaged 11 %. On average over nine years (2002–2010) the balance of N fluxes suggested that 7.2 ± 4.6 g N m−2 y−1 (mean ± confidence interval at p > 0.95) were stored in the soil. The largest component of the C budget was the net ecosystem exchange of CO2 (NEE), at an average uptake rate of 218 ± 155 g C m−2 y−1 over the nine years. This sink strength was offset by carbon export from the field mainly as harvest (48.9 g C m2 yr−1) and leaching (16.4 g C m2 yr−1). The other export terms, CH4 emissions from the soil, manure applications and enteric fermentation were negligible and only contributed to 0.02–4.2 % of the total C losses. Only a small fraction of C was incorporated into the body of the grazing animals. Inclusion of these C losses in the budget resulted in a C sink strength of 163 ± 140 g C m−2 y−1. On the contrary, soil stock measurements taken in May 2004 and May 2011 indicated that the grassland sequestered N in the 0–60 cm soil layer at 4.51 ± 2.64 g N m−2 y−1 and lost C at a rate of 29.08 ± 38.19 g C m−2 y-1, respectively. Potential reasons for the discrepancy between these estimates are probably an underestimation of C and N losses, especially from leaching fluxes as well as from animal respiration. The average greenhouse gas (GHG) balance of the grassland was −366 ± 601 g CO2 eq m−2 y−1 and strongly affected by CH4 and N2O emissions. The GHG sink strength of the NEE was reduced by 54 % by CH4 and N2O emissions. Enteric fermentation from the ruminating sheep proved to be an important CH4 source, exceeding the contribution of N2O to the GHG budget in some years.


2012 ◽  
Vol 419 ◽  
pp. 178-186 ◽  
Author(s):  
Shohei Riya ◽  
Sheng Zhou ◽  
Yoichi Watanabe ◽  
Masaki Sagehashi ◽  
Akihiko Terada ◽  
...  

2021 ◽  
Author(s):  
Stephanie Gerin ◽  
Tuomas Laurila ◽  
Liisa Kulmala ◽  
Juha-Pekka Tuovinen ◽  
Henriikka Vekuri ◽  
...  

<p>Pristine boreal peatlands are often considered neutral or even small sinks for nitrous oxide (N2O). However, drained peatlands are a significant source of N2O. In these managed sites, oxygen becomes more available, increasing denitrification and therefore N2O release into the atmosphere. N2O emissions do not typically follow a strong seasonal pattern like carbon dioxide but instead, have high spatial and temporal variability. Short-term N2O peak emissions can be observed after various meteorological or soil management events throughout the year, for example after soil freezing or thawing, or fertilization. However, it is not well known how exactly those events trigger the N2O emission peaks. Therefore, N2O annual budget based on punctual chamber measurement can introduce large uncertainties. That is why it is important to measure N2O emissions with a continuous method to better understand the controlling factors and to estimate the annual budgets more accurately.</p><p>For the first time in the boreal region of Europe, N2O emissions were continuously observed during a full year in a drained agricultural peatland with the eddy covariance (EC) technique. The study site is a managed peatland in northern Finland, in Ruukki (Latitude: 64.684010; Longitude: 25.106473), with a peat depth between 10 and 90 cm. It is currently managed as a grass field, composed of a mixture of timothy and meadow fescue. We will show a first overview of the N2O fluxes measured since November 2019 with the EC technique. We will present how various meteorological and management events can explain some short-term variations. Then, we will compare the N2O annual budget estimated from the EC measurements to the IPCC emission factor and to different estimates achieved using several sets of non-continuous data points, representing manual chamber measurements with varying frequency.</p>


Sign in / Sign up

Export Citation Format

Share Document