scholarly journals Task-based memory systems in contextual-cueing of visual search and explicit recognition

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Thomas Geyer ◽  
Pardis Rostami ◽  
Lisa Sogerer ◽  
Bernhard Schlagbauer ◽  
Hermann J. Müller

Abstract Visual search is facilitated when observers encounter targets in repeated display arrangements. This ‘contextual-cueing’ (CC) effect is attributed to incidental learning of spatial distractor-target relations. Prior work has typically used only one recognition measure (administered after the search task) to establish whether CC is based on implicit or explicit memory of repeated displays, with the outcome depending on the diagnostic accuracy of the test. The present study compared two explicit memory tests to tackle this issue: yes/no recognition of a given search display as repeated versus generation of the quadrant in which the target (which was replaced by a distractor) had been located during the search task, thus closely matching the processes involved in performing the search. While repeated displays elicited a CC effect in the search task, both tests revealed above-chance knowledge of repeated displays, though explicit-memory accuracy and its correlation with contextual facilitation in the search task were more pronounced for the generation task. These findings argue in favor of a one-system, explicit-memory account of CC. Further, they demonstrate the superiority of the generation task for revealing the explicitness of CC, likely because both the search and the memory task involve overlapping processes (in line with ‘transfer-appropriate processing’).

2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Bernhard Schlagbauer ◽  
Manuel Rausch ◽  
Michael Zehetleitner ◽  
Hermann J Müller ◽  
Thomas Geyer

2011 ◽  
Vol 23 (7) ◽  
pp. 1710-1722 ◽  
Author(s):  
Kevin Dent ◽  
Harriet Allen ◽  
Glyn W. Humphreys

Brain activity was recorded while participants engaged in a difficult visual search task for a target defined by the spatial configuration of its component elements. The search displays were segmented by time (a preview then a search display), by motion, or were unsegmented. A preparatory network showed activity to the preview display, in the time but not in the motion segmentation condition. A region of the precuneus showed (i) higher activation when displays were segmented by time or by motion, and (ii) correlated activity with larger segmentation benefits behaviorally, regardless of the cue. Additionally, the results revealed that success in temporal segmentation was correlated with reduced activation in early visual areas, including V1. The results depict partially overlapping brain networks for segmentation in search by time and motion, with both cue-independent and cue-specific mechanisms.


2018 ◽  
Vol 71 (10) ◽  
pp. 2235-2248 ◽  
Author(s):  
Alexandra Trani ◽  
Paul Verhaeghen

We investigated pupil dilation in 96 subjects during task preparation and during a post-trial interval in a visual search task and an auditory working memory task. Completely informative difficulty cues (easy, medium, or hard) were presented right before task preparation to examine whether pupil dilation indicated advance mobilisation of attentional resources; functional magnetic resonance imaging (fMRI) studies have argued for the existence of such task preparation, and the literature shows that pupil dilation tracks attentional effort during task performance. We found, however, little evidence for such task preparation. In the working memory task, pupil size was identical across cues, and although pupil dilation in the visual search task tracked the cue, pupil dilation predicted subsequent performance in neither task. Pupil dilation patterns in the post-trial interval were more consistent with an effect of emotional reactivity. Our findings suggest that the mobilisation of attentional resources in the service of the task does not occur during the preparatory interval, but is delayed until the task itself is initiated.


2020 ◽  
pp. 1-13
Author(s):  
Anna Vaskevich ◽  
Alon Nishry ◽  
Yotam Smilansky ◽  
Roy Luria

In this work, we relied on electrophysiological methods to characterize the processing stages that are affected by the presence of regularity in a visual search task. EEG was recorded for 72 participants while they completed a visual search task. Depending on the group, the task contained a consistent-mapping condition, a random-mapping condition, or both consistent and random conditions intermixed (mixed group). Contrary to previous findings, the control groups allowed us to demonstrate that the contextual cueing effect that was observed in the mixed group resulted from interference, not facilitation, to the target selection, response selection, and response execution processes (N2-posterior-contralateral, stimulus-locked lateralized readiness potential [LRP], and response-locked LRP components). When the regularity was highly valid (consistent-only group), the presence of regularity drove performance beyond general practice effects, through facilitation in target selection and response selection (N2-posterior-contralateral and stimulus-locked LRP components). Overall, we identified two distinct effects created by the presence of regularity: a global effect of validity that dictates the degree to which all information is taken into account and a local effect of activating the information on every trial. We conclude that, when considering the influence of regularity on behavior, it is vital to assess how the overall reliability of the incoming information is affected.


2016 ◽  
Vol 28 (2) ◽  
pp. 319-332 ◽  
Author(s):  
Anna Grubert ◽  
Martin Eimer

Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.


Author(s):  
David Soto ◽  
Glyn W. Humphreys

Recent research has shown that the contents of working memory (WM) can guide the early deployment of attention in visual search. Here, we assessed whether this guidance occurred for all attributes of items held in WM, or whether effects are based on just the attributes relevant for the memory task. We asked observers to hold in memory just the shape of a coloured object and to subsequently search for a target line amongst distractor lines, each embedded within a different object. On some trials, one of the objects in the search display could match the shape, the colour or both dimensions of the cue, but this object never contained the relevant target line. Relative to a neutral baseline, where there was no match between the memory and the search displays, search performance was impaired when a distractor object matched both the colour and the shape of the memory cue. The implications for the understanding of the interaction between WM and selection are discussed.


Author(s):  
Kit W. Cho

Abstract. Words rated for their survival relevance are remembered better than when rated using other well-known memory mnemonics. This finding, which is known as the survival advantage effect and has been replicated in many studies, suggests that our memory systems are molded by natural selection pressures. In two experiments, the present study used a visual search task to examine whether there is likewise a survival advantage for our visual systems. Participants rated words for their survival relevance or for their pleasantness before locating that object’s picture in a search array with 8 or 16 objects. Although there was no difference in search times among the two rating scenarios when set size was 8, survival processing reduced visual search times when set size was 16. These findings reflect a search efficiency effect and suggest that similar to our memory systems, our visual systems are also tuned toward self-preservation.


2006 ◽  
Vol 18 (3) ◽  
pp. 311-319 ◽  
Author(s):  
Stefan Fischer ◽  
Spyridon Drosopoulos ◽  
Jim Tsen ◽  
Jan Born

There is evidence that sleep supports the enhancement of implicit as well as explicit memories (i.e., two memory systems that during learning normally appear to act together). Here, employing a serial reaction time task (SRTT) paradigm, we examined the question whether sleep can provide explicit knowledge on an implicitly acquired skill. At learning, young healthy subjects (n = 20) were first trained on the SRTT. Then, implicit knowledge was assessed on two test blocks, in which grammatically incorrect target positions were occasionally interspersed by the difference in reaction times between grammatically correct and incorrect target positions. To assess explicit sequence knowledge, thereafter subjects performed on a generation task in which they were explicitly instructed to predict the sequential target positions. In half the subjects, learning took place before a 9-hour retention interval filled with nocturnal sleep (sleep group), in the other half, the retention interval covered a 9-hour period of daytime wakefulness (wake group). At subsequent retesting, both testing on the generation task and the SRTT test blocks was repeated. At learning before the retention interval, subjects displayed significant implicit sequence knowledge which was comparable for the sleep and wake groups. Moreover, both groups did not display any explicit sequence knowledge as indicated by a prediction performance not differing from chance on the generation task. However, at retesting, there was a distinct gain in explicit knowledge in the subjects who had slept in the retention interval, whereas generation task performance in the wake group remained at chance level. SRTT performance in the test blocks at retesting did not indicate any further gain in skill (i.e., unchanged reaction time differences between grammatically correct and incorrect target positions) independently of whether subjects had slept or remained awake after learning. Our results indicate a selective enhancement of explicit memory formation during sleep. Because before sleep subjects only had implicit knowledge on the sequence of target transitions, these data point to an interaction between implicit and explicit memory systems during sleep-dependent off-line learning.


Sign in / Sign up

Export Citation Format

Share Document