scholarly journals Efficient classical computation of expectation values in a class of quantum circuits with an epistemically restricted phase space representation

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Agung Budiyono ◽  
Hermawan K. Dipojono

Abstract We devise a classical algorithm which efficiently computes the quantum expectation values arising in a class of continuous variable quantum circuits wherein the final quantum observable—after the Heisenberg evolution associated with the circuits—is at most second order in momentum. The classical computational algorithm exploits a specific epistemic restriction in classical phase space which directly captures the quantum uncertainty relation, to transform the quantum circuits in the complex Hilbert space into classical albeit unconventional stochastic processes in the phase space. The resulting multidimensional integral is then evaluated using the Monte Carlo sampling method. The convergence rate of the classical sampling algorithm is determined by the variance of the classical physical quantity over the epistemically restricted phase space distribution. The work shows that for the specific class of computational schemes, Wigner negativity is not a sufficient resource for quantum speedup. It highlights the potential role of the epistemic restriction as an intuitive conceptual tool which may be used to study the boundary between quantum and classical computations.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
F. Becattini ◽  
M. Buzzegoli ◽  
A. Palermo

Abstract We derive a general exact form of the phase space distribution function and the thermal expectation values of local operators for the free quantum scalar field at equilibrium with rotation and acceleration in flat space-time without solving field equations in curvilinear coordinates. After factorizing the density operator with group theoretical methods, we obtain the exact form of the phase space distribution function as a formal series in thermal vorticity through an iterative method and we calculate thermal expectation values by means of analytic continuation techniques. We separately discuss the cases of pure rotation and pure acceleration and derive analytic results for the stress-energy tensor of the massless field. The expressions found agree with the exact analytic solutions obtained by solving the field equation in suitable curvilinear coordinates for the two cases at stake and already — or implicitly — known in literature. In order to extract finite values for the pure acceleration case we introduce the concept of analytic distillation of a complex function. For the massless field, the obtained expressions of the currents are polynomials in the acceleration/temperature ratios which vanish at 2π, in full accordance with the Unruh effect.


1966 ◽  
Vol 25 ◽  
pp. 46-48 ◽  
Author(s):  
M. Lecar

“Dynamical mixing”, i.e. relaxation of a stellar phase space distribution through interaction with the mean gravitational field, is numerically investigated for a one-dimensional self-gravitating stellar gas. Qualitative results are presented in the form of a motion picture of the flow of phase points (representing homogeneous slabs of stars) in two-dimensional phase space.


1969 ◽  
Vol 29 (5) ◽  
pp. 245-246 ◽  
Author(s):  
A.K. Jaiswal ◽  
C.L. Mehta

2021 ◽  
Author(s):  
Sibghatullah I. Khan ◽  
Vikram Palodiya ◽  
Lavanya Poluboyina

Abstract Bronchiectasis and chronic obstructive pulmonary disease (COPD) are common human lung diseases. In general, the expert pulmonologistcarries preliminary screening and detection of these lung abnormalities by listening to the adventitious lung sounds. The present paper is an attempt towards the automatic detection of adventitious lung sounds ofBronchiectasis,COPD from normal lung sounds of healthy subjects. For classification of the lung sounds into a normaland adventitious category, we obtain features from phase space representation (PSR). At first, the empirical mode decomposition (EMD) is applied to lung sound signals to obtain intrinsic mode functions (IMFs). The IMFs are then further processed to construct two dimensional (2D) and three dimensional (3D) PSR. The feature space includes the 95% confidence ellipse area and interquartile range (IQR) of Euclidian distances computed from 2D and 3D PSRs, respectively. The process is carried out for the first four IMFs correspondings to normal and adventitious lung sound signals. The computed features depicta significant ability to discriminate the two categories of lung sound signals.To perform classification, we use the least square support vector machine with two kernels, namely, polynomial and radial basis function (RBF).Simulation outcomes on ICBHI 2017 lung sound dataset show the ability of the proposed method in effectively classifying normal and adventitious lung sound signals. LS-SVM is employing RBF kernel provides the highest classification accuracy of 97.67 % over feature space constituted by first, second, and fourth IMF.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0247272
Author(s):  
Claudius Gros ◽  
Roser Valenti ◽  
Lukas Schneider ◽  
Benedikt Gutsche ◽  
Dimitrije Marković

The distinct ways the COVID-19 pandemic has been unfolding in different countries and regions suggest that local societal and governmental structures play an important role not only for the baseline infection rate, but also for short and long-term reactions to the outbreak. We propose to investigate the question of how societies as a whole, and governments in particular, modulate the dynamics of a novel epidemic using a generalization of the SIR model, the reactive SIR (short-term and long-term reaction) model. We posit that containment measures are equivalent to a feedback between the status of the outbreak and the reproduction factor. Short-term reaction to an outbreak corresponds in this framework to the reaction of governments and individuals to daily cases and fatalities. The reaction to the cumulative number of cases or deaths, and not to daily numbers, is captured in contrast by long-term reaction. We present the exact phase space solution of the controlled SIR model and use it to quantify containment policies for a large number of countries in terms of short and long-term control parameters. We find increased contributions of long-term control for countries and regions in which the outbreak was suppressed substantially together with a strong correlation between the strength of societal and governmental policies and the time needed to contain COVID-19 outbreaks. Furthermore, for numerous countries and regions we identified a predictive relation between the number of fatalities within a fixed period before and after the peak of daily fatality counts, which allows to gauge the cumulative medical load of COVID-19 outbreaks that should be expected after the peak. These results suggest that the proposed model is applicable not only for understanding the outbreak dynamics, but also for predicting future cases and fatalities once the effectiveness of outbreak suppression policies is established with sufficient certainty. Finally, we provide a web app (https://itp.uni-frankfurt.de/covid-19/) with tools for visualising the phase space representation of real-world COVID-19 data and for exporting the preprocessed data for further analysis.


2017 ◽  
Vol 83 (4) ◽  
Author(s):  
Alexander J. Klimas ◽  
Adolfo F. Viñas ◽  
Jaime A. Araneda

A one-dimensional electrostatic filtered Vlasov–Poisson simulation study is discussed. The transition from persisting to arrested Landau damping that is produced by increasing the strength of a sinusoidal perturbation on a background Vlasov–Poisson equilibrium is explored. Emphasis is placed on observed features of the electron phase-space distribution when the perturbation strength is near the transition value. A single ubiquitous waveform is found perturbing the space-averaged phase-space distribution at almost any time in all of the simulations; the sole exception is the saturation stage that can occur at the end of the arrested damping scenario. This waveform contains relatively strong, very narrow structures in velocity bracketing $\pm v_{\text{res}}$ – the velocities at which electrons must move to traverse the dominant field mode wavelength in one of its oscillation periods – and propagating with $\pm v_{\text{res}}$ respectively. Local streams of electrons are found in these structures crossing the resonant velocities from low speed to high speed during Landau damping and from high speed to low speed during Landau growth. At the arrest time, when the field strength is briefly constant, these streams vanish. It is conjectured that the expected transfer of energy between electrons and field during Landau growth or damping has been visualized for the first time. No evidence is found in the phase-space distribution to support recent well-established discoveries of a second-order phase transition in the electric field evolution. While trapping is known to play a role for larger perturbation strengths, it is shown that trapping plays no role at any time in any of the simulations near the transition perturbation strength.


Sign in / Sign up

Export Citation Format

Share Document