scholarly journals Identifying volatile organic compounds used for olfactory navigation by homing pigeons

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nora Zannoni ◽  
Martin Wikelski ◽  
Anna Gagliardo ◽  
Atif Raza ◽  
Stefan Kramer ◽  
...  

Abstract Many bird species have the ability to navigate home after being brought to a remote, even unfamiliar location. Environmental odours have been demonstrated to be critical to homeward navigation in over 40 years of experiments, yet the chemical identity of the odours has remained unknown. In this study, we investigate potential chemical navigational cues by measuring volatile organic compounds (VOCs): at the birds’ home-loft; in selected regional forest environments; and from an aircraft at 180 m. The measurements showed clear regional, horizontal and vertical spatial gradients that can form the basis of an olfactory map for marine emissions (dimethyl sulphide, DMS), biogenic compounds (terpenoids) and anthropogenic mixed air (aromatic compounds), and temporal changes consistent with a sea-breeze system. Air masses trajectories are used to examine GPS tracks from released birds, suggesting that local DMS concentrations alter their flight directions in predictable ways. This dataset reveals multiple regional-scale real-world chemical gradients that can form the basis of an olfactory map suitable for homing pigeons.

2009 ◽  
Vol 43 (35) ◽  
pp. 5647-5653 ◽  
Author(s):  
David A. Olson ◽  
Davyda M. Hammond ◽  
Robert L. Seila ◽  
Janet M. Burke ◽  
Gary A. Norris

2013 ◽  
Vol 13 (8) ◽  
pp. 4291-4306 ◽  
Author(s):  
R. Seco ◽  
J. Peñuelas ◽  
I. Filella ◽  
J. Llusia ◽  
S. Schallhart ◽  
...  

Abstract. Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, but little is known about the daily VOC mixing ratios in Mediterranean urban and natural environments. We measured VOC mixing ratios concurrently at an urban and a rural site during the winter DAURE campaign in the northeastern Iberian Peninsula, by means of PTR-MS at both locations: a PTR-Quad-MS at the urban site and a PTR-ToF-MS at the rural site. All VOC mixing ratios measured were higher at the urban site (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 1.68, 0.31, 0.58 and 2.71 ppbv, respectively), with the exception of some short-chain oxygenated VOCs such as acetone (with similar averages of 0.7–1.6 ppbv at both sites). The average diurnal pattern also differed between the sites. Most of the VOCs at the urban location showed their highest mixing ratios in the morning and evening. These peaks coincided with traffic during rush hour, the main origin of most of the VOCs analyzed. Between these two peaks, the sea breeze transported the urban air inland, thus helping to lower the VOC loading at the urban site. At the rural site, most of the measured VOCs were advected by the midday sea breeze, yielding the highest daily VOC mixing ratios (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 0.65, 0.07, 0.19, and 0.41 ppbv, respectively). Only biogenic monoterpenes showed a clear local origin at this site. In addition, the concentrations of fine particulate matter observed at both sites, together with the synoptic meteorological conditions and radio-sounding data, allowed the identification of different atmospheric scenarios that had a clear influence on the measured VOC mixing ratios. These results highlight the differences and relationships in VOC mixing ratios between nearby urban and rural areas in Mediterranean regions. Further research in other urban-rural areas is warranted to better understand the urban-rural influence on atmospheric VOC mixing ratios under different atmospheric conditions.


2012 ◽  
Vol 12 (11) ◽  
pp. 30909-30950 ◽  
Author(s):  
R. Seco ◽  
J. Peñuelas ◽  
I. Filella ◽  
J. Llusia ◽  
S. Schallhart ◽  
...  

Abstract. Atmospheric volatile organic compounds (VOCs) have key environmental and biological roles, but little is known about the daily VOC mixing ratios in Mediterranean urban and natural environments. We measured VOC mixing ratios concurrently at an urban and a rural site during the winter DAURE campaign in the northeastern Iberian Peninsula. All VOC mixing ratios measured were higher at the urban site (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 1.68, 0.31, 0.58 and 2.71 ppbv, respectively), with the exception of some short chain oxygenated VOCs such as acetone (with similar averages of 0.7–1.6 ppbv at both sites). Their average diurnal pattern also differed between the sites. Most of the VOCs at the urban location showed their highest mixing ratios in the morning and evening. These peaks coincided with traffic during rush hours, the main origin of most of the VOCs analyzed. Between these two peaks, the sea breeze transported the urban air inland, thus helping to lower the VOC loading at the urban site. At the rural site, most of the measured VOCs were advected by the midday sea breeze, yielding the highest daily VOC mixing ratios (e.g. acetaldehyde, isoprene, benzene, and toluene with averages up to 0.65, 0.07, 0.19, and 0.41 ppbv, respectively). Only biogenic monoterpenes showed a clear local origin at this site. In addition, the concentrations of fine particulate matter observed at both sites, together with the synoptic meteorological conditions and radio-sounding data, allowed the identification of different atmospheric scenarios that had a clear influence on the measured VOC mixing ratios. These results highlight the differences and relationships in VOC mixing ratios between nearby urban and rural areas in Mediterranean regions. Further research in other urban-rural areas is warranted to better understand the urban-rural influence on atmospheric VOC mixing ratios under different atmospheric conditions.


2011 ◽  
Vol 8 (1) ◽  
pp. 74 ◽  
Author(s):  
Valérie Gros ◽  
Cécile Gaimoz ◽  
Frank Herrmann ◽  
Tom Custer ◽  
Jonathan Williams ◽  
...  

Environmental context Megacities are huge hotspots of pollutants that have an impact on atmospheric composition on local to larger scales. This study presents for the first time detailed results of measurements of volatile organic compounds in Paris and shows that, whereas non-methane hydrocarbons are mainly of local and regional origin associated with traffic emissions, a significant part of oxygenated volatile organic compounds originates from continental import. This highlights the importance of measuring volatile organic compounds instead of non-methane hydrocarbons alone in source classification studies. Abstract High-time-resolution measurements of volatile organic compounds (VOCs) were performed in the Paris city centre in spring 2007. The studied region was influenced mainly by air masses of two origins: (1) from the Atlantic Ocean, and (2) from north-eastern Europe. Although the baseline levels (i.e. those not influenced by local emissions) of non-methane hydrocarbons (NMHC) and CO were only slightly impacted by changes in the air-mass origin, oxygenated compounds such as acetone and methanol showed much higher baseline levels in continentally influenced air masses. This suggests that NMHC and CO mixing ratios were mainly influenced by local-to-regional-scale sources whereas oxygenated compounds had a more significant continental-scale contribution. This highlights the importance of measuring VOCs instead of NMHC alone in source classification studies. The period of Atlantic air influence was used to characterise local pollution, which was dominated by traffic-related emissions, although traffic represents the source of only one third of total VOCs emissions in the local inventory. In addition to traffic-related sources, additional sources were identified; in particular, emissions from dry-cleaning activities were identified by the use of a specific tracer (i.e. tetrachloroethylene).


Sign in / Sign up

Export Citation Format

Share Document