scholarly journals Role of myo-inositol during skotomorphogenesis in Arabidopsis

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Naveen Sharma ◽  
Chanderkant Chaudhary ◽  
Paramjit Khurana

Abstract Myo-inositol is a ubiquitous metabolite of plants. It is synthesized by a highly conserved enzyme L-myo-inositol phosphate synthase (MIPS; EC 5.5.1.4). Myo-inositol is well characterized during abiotic stress tolerance but its role during growth and development is unclear. In this study, we demonstrate that the apical hook maintenance and hypocotyl growth depend on myo-inositol. We discovered the myo-inositol role during hook formation and its maintenance via ethylene pathway in Arabidopsis by supplementation assays and qPCR. Our results suggest an essential requirement of myo-inositol for mediating the ethylene response and its interaction with brassinosteroid to regulate the skotomorphogenesis. A model is proposed outlining how MIPS regulates apical hook formation and hypocotyl growth.

Author(s):  
Rafaqat Ali Gill ◽  
Sunny Ahmar ◽  
Basharat Ali ◽  
Muhammad Hamzah Saleem ◽  
Muhammad Umar Khan ◽  
...  

Membrane transporters (MTs) are mainly localized at the plasma membrane (PM), tonoplast and vacuolar membrane (VM) of cells in all plant organs. Their work is to maintain the cellular homeostasis by controlling ionic movements across PM channels from roots to upper plant parts, xylem loading and remobilization of sugar molecules from photosynthesis tissues in the leaf (source) to roots, stem and seeds (sink) via phloem loading. The plant’s whole source-to-sink relationship is regulated by multiple transporting proteins in a highly sophisticated manner and driven based on different stages of plant growth and development (PG&D), and environmental changes. The MTs play a pivotal role in PG&D in terms of increased plant height, branches/tiller numbers, enhanced numbers, length and filled panicles per plant, seed yield and grain quality. Dynamic climatic changes disturbed the ionic balance (salt, drought and heavy metals) and sugar supply (cold and heat stress). Due to poor selectivity, some of the MTs also uptake toxic elements in the roots that negatively impact on PG&D, later on also exported to upper parts and then deteriorate the grain quality. As an adaptive strategy, in response to salt and HMs plants activated PM and VM localized MTs that export toxic elements into vacuole, and also translocate in the root’s tips and shoot. However, in case of drought, cold and heat stresses, MTs increased the water and sugar supply to all organs. In this review, we mainly reviewed recent literature from Arabidopsis, halophytes, and major field crops such as rice, wheat, maize and oilseed rape to argue on the global role of MTs in PG&D and abiotic stress tolerance. We also discussed the gene expression level changes and genomic variations within a species as well as within a family in response to developmental and environmental cues.


Author(s):  
Gábor Feigl ◽  
Árpád Molnár ◽  
Dóra Oláh ◽  
Zsuzsanna Kolbert

Author(s):  
Muhammad Naeem ◽  
Misbah Amir ◽  
Hamid Manzoor ◽  
Sumaira Rasul ◽  
Habib-ur-Rehman Athar

2021 ◽  
pp. 217-243
Author(s):  
Ashutosh Sharma ◽  
Pooja Sharma ◽  
Rahul Kumar ◽  
Vikas Sharma ◽  
Renu Bhardwaj ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document