scholarly journals Comparison of soil microbial community between reseeding grassland and natural grassland in Songnen Meadow

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruifen Zhu ◽  
Jielin Liu ◽  
Jianli Wang ◽  
Weibo Han ◽  
Zhongbao Shen ◽  
...  

Abstract Microorganisms have important ecological functions in ecosystems. Reseeding is considered as one of the main strategies for preventing grassland degradation in China. However, the response of soil microbial community and diversity to reseeding grassland (RG) and natural grassland (NG) remains unclear, especially in the Songnen Meadow. In this study, the soil microbial community compositions of two vegetation restoration types (RG vs NG) were analyzed using a high-throughput sequencing technique. A total of 23,142 microbial OTUs were detected, phylogenetically derived from 11 known bacterial phyla. Soil advantage categories included Proteobacteria, Acidobacteria, Actinobacteria, and Bacteroidetes, which together accounted for > 78% of the all phyla in vegetation restoration. The soil microbial diversity was higher in RG than in NG. Two types of vegetation restoration had significantly different characteristics of soil microbial community (P < 0.001). Based on a molecular ecological network analysis, we found that the network in RG had a longer average path distance and modularity than in NG network, making it more resilient to environment changes. Meanwhile, the results of the canonical correspondence analysis and molecular ecological network analysis showed that soil pH (6.34 ± 0.35 in RG and 7.26 ± 0.28 in NG) was the main factor affecting soil microbial community structure, followed by soil moisture (SM) in the Songnen meadow, China. Besides, soil microbial community characteristics can vary significantly in different vegetation restoration. Thus, we suggested that it was necessary and reasonable for this area to popularize reseeding grassland in the future.

Agriculture ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 445
Author(s):  
Jessica Cuartero ◽  
Onurcan Özbolat ◽  
Virginia Sánchez-Navarro ◽  
Marcos Egea-Cortines ◽  
Raúl Zornoza ◽  
...  

Long-term organic farming aims to reduce synthetic fertilizer and pesticide use in order to sustainably produce and improve soil quality. To do this, there is a need for more information about the soil microbial community, which plays a key role in a sustainable agriculture. In this paper, we assessed the long-term effects of two organic and one conventional cropping systems on the soil microbial community structure using high-throughput sequencing analysis, as well as the link between these communities and the changes in the soil properties and crop yield. The results showed that the crop yield was similar among the three cropping systems. The microbial community changed according to cropping system. Organic cultivation with manure compost and compost tea (Org_C) showed a change in the bacterial community associated with an improved soil carbon and nutrient content. A linear discriminant analysis effect size showed different bacteria and fungi as key microorganisms for each of the three different cropping systems, for conventional systems (Conv), different microorganisms such as Nesterenkonia, Galbibacter, Gramella, Limnobacter, Pseudoalteromonas, Pantoe, and Sporobolomyces were associated with pesticides, while for Org_C and organic cultivation with manure (Org_M), other types of microorganisms were associated with organic amendments with different functions, which, in some cases, reduce soil borne pathogens. However, further investigations such as functional approaches or network analyses are need to better understand the mechanisms behind this behavior.


2012 ◽  
Vol 424 ◽  
pp. 344-350 ◽  
Author(s):  
Verónica Nogueira ◽  
Isabel Lopes ◽  
Teresa Rocha-Santos ◽  
Ana L. Santos ◽  
Graça M. Rasteiro ◽  
...  

2002 ◽  
Vol 21 (3) ◽  
pp. 261-265 ◽  
Author(s):  
E Benizri ◽  
O Dedourge ◽  
C Dibattista-Leboeuf ◽  
S Piutti ◽  
C Nguyen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document