scholarly journals Invasion front dynamics in disordered environments

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Youness Azimzade ◽  
Mahdi Sasar ◽  
Iraj Maleki

Abstract Invasion occurs in environments that are normally spatially disordered, however, the effect of such a randomness on the dynamics of the invasion front has remained less understood. Here, we study Fisher’s equation in disordered environments both analytically and numerically. Using the Effective Medium Approximation, we show that disorder slows down invasion velocity and for ensemble average of invasion velocity in disordered environment we have $$\bar{v}=v_0 (1-|\xi |^2/6)$$ v ¯ = v 0 ( 1 - | ξ | 2 / 6 ) where $$|\xi |$$ | ξ | is the amplitude of disorder and $$v_0$$ v 0 is the invasion velocity in the corresponding homogeneous environment given by $$v_0=2\sqrt{RD_0}$$ v 0 = 2 R D 0 . Additionally, disorder imposes fluctuations on the invasion front. Using a perturbative approach, we show that these fluctuations are Brownian with a diffusion constant of: $$D_{C}= \dfrac{1}{8} \xi ^2\sqrt{RD_0 (1-|\xi |^2/3)}$$ D C = 1 8 ξ 2 R D 0 ( 1 - | ξ | 2 / 3 ) . These findings were approved by numerical analysis. Alongside this continuum model, we use the Stepping Stone Model to check how our findings change when we move from the continuum approach to a discrete approach. Our analysis suggests that individual-based models exhibit inherent fluctuations and the effect of environmental disorder becomes apparent for large disorder intensity and/or high carrying capacities.

2017 ◽  
Vol 33 (6) ◽  
Author(s):  
Wei Ge ◽  
Limin Wang ◽  
Ji Xu ◽  
Feiguo Chen ◽  
Guangzheng Zhou ◽  
...  

AbstractMultiphase chemical reactors with characteristic multiscale structures are intrinsically discrete at the elemental scale. However, due to the lack of multiscale models and the limitation of computational capability, such reactors are traditionally treated as continua through straightforward averaging in engineering simulations or as completely discrete systems in theoretical studies. The continuum approach is advantageous in terms of the scale and speed of computation but does not always give good predictions, which is, in many cases, the strength of the discrete approach. On the other hand, however, the discrete approach is too computationally expensive for engineering applications. Developments in computing science and technologies and encouraging progress in multiscale modeling have enabled discrete simulations to be extended to engineering systems and represent a promising approach to virtual process engineering (VPE, or virtual reality in process engineering). In this review, we analyze this emerging trend and emphasize that multiscale discrete simulations (MSDS), that is, considering multiscale structures in discrete simulation through rational coarse-graining and coupling between discrete and continuum methods with the effect of mesoscale structures accounted in both cases, is an effective way forward, which can be complementary to the continuum approach that is being improved by multiscale modeling also. For this purpose, our review is not meant to be a complete summary to the literature on discrete simulation, but rather a demonstration of its feasibility for engineering applications. We therefore discuss the enabling methods and technologies for MSDS, taking granular and particle-fluid flows as typical examples in chemical engineering. We cover the spectrum of modeling, numerical methods, algorithms, software implementation and even hardware-software codesign. The structural consistency among these aspects is shown to be the pivot for the success of MSDS. We conclude that with these developments, MSDS could soon become, among others, a mainstream simulation approach in chemical engineering which enables VPE.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Thomas G. Mertens ◽  
Gustavo J. Turiaci

Abstract We study two-dimensional Liouville gravity and minimal string theory on spaces with fixed length boundaries. We find explicit formulas describing the gravitational dressing of bulk and boundary correlators in the disk. Their structure has a striking resemblance with observables in 2d BF (plus a boundary term), associated to a quantum deformation of SL(2, ℝ), a connection we develop in some detail. For the case of the (2, p) minimal string theory, we compare and match the results from the continuum approach with a matrix model calculation, and verify that in the large p limit the correlators match with Jackiw-Teitelboim gravity. We consider multi-boundary amplitudes that we write in terms of gluing bulk one-point functions using a quantum deformation of the Weil-Petersson volumes and gluing measures. Generating functions for genus zero Weil-Petersson volumes are derived, taking the large p limit. Finally, we present preliminary evidence that the bulk theory can be interpreted as a 2d dilaton gravity model with a sinh Φ dilaton potential.


2018 ◽  
Vol 10 (1) ◽  
pp. 7-13
Author(s):  
Evgeny KAMENETSKY ◽  
◽  
Natalya ORLOVA ◽  

1980 ◽  
Vol 102 (2) ◽  
pp. 153-164 ◽  
Author(s):  
M. Godet ◽  
D. Play ◽  
D. Berthe

This paper attempts to give a unified treatment of experiments obtained with solid, liquid and boundary lubricants, different plastics, high temperature steels and elastomers. The argument is centered around third body role, load-carrying capacity, transport and continuum mechanics. This study suggests that an extension to general tribology of the continuum approach used in full film lubrication could be profitable.


2003 ◽  
Vol 37 (5) ◽  
pp. 505-511 ◽  
Author(s):  
Richard Mullen

Objective: In this paper I critically review the recently developed idea that delusions are best considered as part of a continuum along with more ordinary human beliefs. Method: A literature review of the area was guided by a Medline search, and supplemented with material already known to the author. Claims that recent research supports the continuum hypothesis is critiqued. Results: The argument and evidence advanced for the continuum approach to delusions depends largely on: (i) inadequacies of prevailing definitions of delusion, particularly in the light of evidence that delusional conviction is often not absolute; and (ii) the high prevalence of unusual beliefs in community populations. To the extent that the delusion construct contains much in addition to conviction and unusual or false belief content, the continuity approach is weak. The category of delusions continues to have some validity. Conclusion: Both categorical and continuous approaches to delusions have validity that depends at any time on our immediate clinical or scientific needs. No definitive resolution of the category versus continuum debate is likely to emerge.


Sign in / Sign up

Export Citation Format

Share Document