scholarly journals Multi-beam X-ray ptychography for high-throughput coherent diffraction imaging

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yudong Yao ◽  
Yi Jiang ◽  
Jeffrey A. Klug ◽  
Michael Wojcik ◽  
Evan R. Maxey ◽  
...  

Abstract X-ray ptychography is a rapidly developing coherent diffraction imaging technique that provides nanoscale resolution on extended field-of-view. However, the requirement of coherence and the scanning mechanism limit the throughput of ptychographic imaging. In this paper, we propose X-ray ptychography using multiple illuminations instead of single illumination in conventional ptychography. Multiple locations of the sample are simultaneously imaged by spatially separated X-ray beams, therefore, the obtained field-of-view in one scan can be enlarged by a factor equal to the number of illuminations. We have demonstrated this technique experimentally using two X-ray beams focused by a house-made Fresnel zone plate array. Two areas of the object and corresponding double illuminations were successfully reconstructed from diffraction patterns acquired in one scan, with image quality similar with those obtained by conventional single-beam ptychography in sequence. Multi-beam ptychography approach increases the imaging speed, providing an efficient way for high-resolution imaging of large extended specimens.

2018 ◽  
Vol 74 (5) ◽  
pp. 512-517
Author(s):  
Miklós Tegze ◽  
Gábor Bortel

In coherent-diffraction-imaging experiments X-ray diffraction patterns of identical particles are recorded. The particles are injected into the X-ray free-electron laser (XFEL) beam in random orientations. If the particle has symmetry, finding the orientation of a pattern can be ambiguous. With some modifications, the correlation-maximization method can find the relative orientations of the diffraction patterns for the case of symmetric particles as well. After convergence, the correlation maps show the symmetry of the particle and can be used to determine the symmetry elements and their orientations. The C factor, slightly modified for the symmetric case, can indicate the consistency of the assembled three-dimensional intensity distribution.


2021 ◽  
Vol 28 (6) ◽  
Author(s):  
Silvia Cipiccia ◽  
Francesco Brun ◽  
Vittorio Di Trapani ◽  
Christoph Rau ◽  
Darren J. Batey

X-ray ptychography and X-ray fluorescence are complementary nanoscale imaging techniques, providing structural and elemental information, respectively. Both methods acquire data by scanning a localized beam across the sample. X-ray ptychography processes the transmission signal of a coherent illumination interacting with the sample, to produce images with a resolution finer than the illumination spot and step size. By enlarging both the spot and the step size, the technique can cover extended regions efficiently. X-ray fluorescence records the emitted spectra as the sample is scanned through the localized beam and its spatial resolution is limited by the spot and step size. The requisites for fast ptychography and high-resolution fluorescence appear incompatible. Here, a novel scheme that mitigates the difference in requirements is proposed. The method makes use of two probes of different sizes at the sample, generated by using two different energies for the probes and chromatic focusing optics. The different probe sizes allow to reduce the number of acquisition steps for the joint fluorescence–ptychography scan compared with a standard single beam scan, while imaging the same field of view. The new method is demonstrated experimentally using two undulator harmonics, a Fresnel zone plate and an energy discriminating photon counting detector.


2013 ◽  
Vol 46 (2) ◽  
pp. 319-323 ◽  
Author(s):  
Y. Chushkin ◽  
F. Zontone

Coherent X-ray diffraction imaging is a lensless imaging technique where an iterative phase-retrieval algorithm is applied to the speckle pattern, the far-field diffraction pattern produced by an isolated object. To ensure convergence to a unique solution, the diffraction pattern must be oversampled by a factor of two or more. Since the resolution in real space depends on the maximum wave vector where the intensity is detected,i.e.on the detector field of view, there is a practical limitation on oversampling in reciprocal space and resolution in real space that is ultimately determined by the number of pixels. This work shows that it is possible to reduce the effective pixel size and maintain the detector field of view by applying a linear combination method to shifted diffraction patterns. The feasibility of the method is demonstrated by reconstructing the images of test objects from diffraction patterns oversampled in each dimension by factors of 1.3 and 1.8 only. The described approach can be applied to any diffraction or imaging technique where the resolution is compromised by a large pixel size.


2019 ◽  
Vol 52 (3) ◽  
pp. 571-578 ◽  
Author(s):  
Y. Chushkin ◽  
F. Zontone ◽  
O. Cherkas ◽  
A. Gibaud

This article presents a combined approach where quantitative forward-scattering coherent diffraction imaging (CDI) is supported by crystal diffraction using 8.1 keV synchrotron X-ray radiation. The method allows the determination of the morphology, mass density and crystallinity of an isolated microscopic specimen. This approach is tested on three homogeneous samples made of different materials with different degrees of crystallinity. The mass density and morphology are revealed using three-dimensional coherent diffraction imaging with a resolution better than 36 nm. The crystallinity is extracted from the diffraction profiles measured simultaneously with coherent diffraction patterns. The presented approach extends CDI to structural characterization of samples when crystallinity aspects are of interest.


2016 ◽  
Vol 49 (4) ◽  
pp. 1190-1202 ◽  
Author(s):  
Vasily I. Punegov ◽  
Sergey I. Kolosov ◽  
Konstantin M. Pavlov

The new dynamical diffraction approach to X-ray diffraction on lateral crystalline structures has been developed to investigate the angular and spatial distribution of wavefields in the case of the Bragg–Laue geometry in non-perfect lateral structures. This approach allows one to calculate reciprocal space maps for deformed lateral crystals having rectangular cross sections for both the transmitted and reflected wavefields. Numerical modelling is performed for crystals with different lateral sizes, thicknesses and deformations. The approach can be used in coherent diffraction imaging to simulate Fraunhofer diffraction patterns produced by relatively large deformed crystals.


2016 ◽  
Vol 72 (4) ◽  
pp. 459-464 ◽  
Author(s):  
Miklós Tegze ◽  
Gábor Bortel

The short pulses of X-ray free-electron lasers can produce diffraction patterns with structural information before radiation damage destroys the particle. From the recorded diffraction patterns the structure of particles or molecules can be determined on the nano- or even atomic scale. In a coherent diffraction imaging experiment thousands of diffraction patterns of identical particles are recorded and assembled into a three-dimensional distribution which is subsequently used to solve the structure of the particle. It is essential to know, but not always obvious, that the assembled three-dimensional reciprocal-space intensity distribution is really consistent with the measured diffraction patterns. This paper shows that, with the use of correlation maps and a single parameter calculated from them, the consistency of the three-dimensional distribution can be reliably validated.


2021 ◽  
Vol 28 (5) ◽  
Author(s):  
Masaki Abe ◽  
Fusae Kaneko ◽  
Nozomu Ishiguro ◽  
Togo Kudo ◽  
Takahiro Matsumoto ◽  
...  

Ptychographic coherent diffraction imaging (CDI) allows the visualization of both the structure and chemical state of materials on the nanoscale, and has been developed for use in the soft and hard X-ray regions. In this study, a ptychographic CDI system with pinhole or Fresnel zone-plate optics for use in the tender X-ray region (2–5 keV) was developed on beamline BL27SU at SPring-8, in which high-precision pinholes optimized for the tender energy range were used to obtain diffraction intensity patterns with a low background, and a temperature stabilization system was developed to reduce the drift of the sample position. A ptychography measurement of a 200 nm thick tantalum test chart was performed at an incident X-ray energy of 2.500 keV, and the phase image of the test chart was successfully reconstructed with approximately 50 nm resolution. As an application to practical materials, a sulfur polymer material was measured in the range of 2.465 to 2.500 keV including the sulfur K absorption edge, and the phase and absorption images were successfully reconstructed and the nanoscale absorption/phase spectra were derived from images at multiple energies. In 3 GeV synchrotron radiation facilities with a low-emittance storage ring, the use of the present system will allow the visualization on the nanoscale of the chemical states of various light elements that play important roles in materials science, biology and environmental science.


Author(s):  
S. O. Hruszkewycz ◽  
M. V. Holt ◽  
J. Maser ◽  
C. E. Murray ◽  
M. J. Highland ◽  
...  

Bragg coherent diffraction with nanofocused hard X-ray beams provides unique opportunities for quantitative in situ studies of crystalline structure in nanoscale regions of complex materials and devices by a variety of diffraction-based techniques. In the case of coherent diffraction imaging, a major experimental challenge in using nanoscale coherent beams is maintaining a constant scattering volume such that coherent fringe visibility is maximized and maintained over the course of an exposure lasting several seconds. Here, we present coherent Bragg diffraction patterns measured from different nanostructured thin films at the Sector 26 Nanoprobe beamline at the Advanced Photon Source and demonstrate that with nanoscale positional control, coherent diffraction patterns can be measured with source-limited fringe visibilities more than 50% suitable for imaging by coherent Bragg ptychography techniques.


Crystals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 312
Author(s):  
Florian Lauraux ◽  
Stéphane Labat ◽  
Sarah Yehya ◽  
Marie-Ingrid Richard ◽  
Steven J. Leake ◽  
...  

The simultaneous measurement of two Bragg reflections by Bragg coherent X-ray diffraction is demonstrated on a twinned Au crystal, which was prepared by the solid-state dewetting of a 30 nm thin gold film on a sapphire substrate. The crystal was oriented on a goniometer so that two lattice planes fulfill the Bragg condition at the same time. The Au 111 and Au 200 Bragg peaks were measured simultaneously by scanning the energy of the incident X-ray beam and recording the diffraction patterns with two two-dimensional detectors. While the former Bragg reflection is not sensitive to the twin boundary, which is oriented parallel to the crystal–substrate interface, the latter reflection is only sensitive to one part of the crystal. The volume ratio between the two parts of the twinned crystal is about 1:9, which is also confirmed by Laue microdiffraction of the same crystal. The parallel measurement of multiple Bragg reflections is essential for future in situ and operando studies, which are so far limited to either a single Bragg reflection or several in series, to facilitate the precise monitoring of both the strain field and defects during the application of external stimuli.


Sign in / Sign up

Export Citation Format

Share Document