scholarly journals Occurrence, environmental implications and risk assessment of Bisphenol A in association with colloidal particles in an urban tropical river in Malaysia

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zakariya Nafi’ Shehab ◽  
Nor Rohaizah Jamil ◽  
Ahmad Zaharin Aris

AbstractPhase distribution of emerging organic contaminants is highly influential in their presence, fate and transport in surface water. Therefore, it is crucial to determine their state, partitioning behaviour and tendencies in water environments. In this study, Bisphenol A was investigated in both colloidal and soluble phases in water. BPA concentrations ranged between 1.13 and 5.52 ng L−1 in the soluble phase and n.d-2.06 ng L−1 in the colloidal phase, respectively. BPA was dominant in the soluble phase, however, the colloidal contribution ranged between 0 and 24% which implied that colloids can play a significant role in controlling BPA’s transportation in water. Urban and industrial areas were the main sources of BPA while forest areas displayed lower levels outside the populated domains. pH levels were between 6.3 and 7.4 which might have affected BPA’s solubility in water to some extent. The particle size distribution showed that the majority of the particles in river samples were smaller than 1.8 µm in diameter with a small presence of nanoparticles. Zeta potential varied between − 25 and − 18 mV, and these negative values suggested instability of particles. Furthermore, BPA was positively correlated with BOD, COD and NH3–N which might indicate that these organic compounds were released concurrently with BPA. RQ assessment showed low levels of risk towards algae and fish in the study area.

2020 ◽  
Vol 4 (5) ◽  
pp. 191-197
Author(s):  
Ozelito Possidonio de Amarante Junior ◽  
Maccarena Marcotti-Murua ◽  
Felipe Sotomayor Stephens

Emerging contaminants are a wide group of compounds that include several classes of organic substances. Personal care products, pharmaceuticals, pesticides, industrial additives, monomers and plasticizers are examples of compounds included in emerging contaminants. In this work, four chemicals representing four classes of organic contaminants were investigated: salicylic acid, representing drugs; bisphenol A, a monomer widely used in the production of polymeric products; methylparaben, used as a preservative in cosmetics; and irgarol, a biocide used in agriculture and antifouling paints. A previously validated method based on liquid chromatography coupled with mass spectrometry was employed to determine the trace-levels of those compounds in ocean waters around King George Island, Antarctica. Salicylic acid and bisphenol A were found in many of the 20 samples investigated, which were collected on the northwest and southeast coasts of the island. Methylparaben and irgarol were found at low levels, each with only one occurrence. Although salicylic acid may originate in the biosynthesis of phenylalanine, the distribution and absence of this substance at some points suggest an anthropic origin. Bisphenol A was found in several sampling points, demonstrating contamination by plastics even though no correlation was found between these two compounds.


Author(s):  
Svetlana A. Popova ◽  
Galina G. Matafonova ◽  
Valeriy B. Batoev

In present work, we have studied the kinetic fundamentals of sonophotochemical oxidation of emerging organic contaminants, atrazine and bisphenol A, in model aqueous solutions, simultaneously exposed to high-frequency ultrasound (US, 1.7 MHz) and ultraviolet light-emitting diodes (UV LEDs, 365 nm) in the absence and presence of persulfate (S2O82-) oxidant. Synergistic indices were calculated to assess a synergistic effect in the hybrid oxidation systems. It was found that the hybrid system {UV/US/S2O82-} exhibited the synergistic effect and was the most efficient for degrading bisphenol A in a raw: UV/US/S2O82- > UV/S2O82- > US/UV > US/S2O82- >> UV > US. In case of atrazine, no ultrasound effect was observed and the efficiencies of {UV/US/S2O82-} and {UV S2O82-} systems in terms of degradation rates were similar. In these oxidation systems, more than 90% of a contaminant was removed after 30 min treatment. Meanwhile, degradation rates for atrazine were higher than those wich were found for bisphenol A. This indicates a predomination of sulfate anion radicals, which react with bisphenol A rather slowly compared to atrazine. A synergism was also found under sonophotolysis of both contaminants without persulfate; however, this process requires a more prolonged irradiation time (~20% degraded in 40 min), hence, it is less energy-effective. The obtained results are promising for application of UV LEDs and high-frequency ultrasound in persulfate-based advanced oxidation processes to degrade organic contaminants in natural water and wastewater.


Engineering ◽  
2021 ◽  
Author(s):  
Mengmeng Zhong ◽  
Tielong Wang ◽  
Wenxing Zhao ◽  
Jun Huang ◽  
Bin Wang ◽  
...  

2021 ◽  
Vol 8 (3) ◽  
pp. 711-722
Author(s):  
Katherine E. Greenstein ◽  
Matthew R. Nagorzanski ◽  
Bailey Kelsay ◽  
Edgard M. Verdugo ◽  
Nosang V. Myung ◽  
...  

Electrospun carbon nanofibers with integrated titanium dioxide nanoparticles are used for water treatment in a photoactive membrane filtration system.


2012 ◽  
Vol 722 ◽  
pp. 8-20 ◽  
Author(s):  
Víctor Matamoros ◽  
Diana Calderón-Preciado ◽  
Carmen Domínguez ◽  
Josep M. Bayona

Author(s):  
Andrew Barrick ◽  
Olivier Champeau ◽  
Juliette Butler ◽  
Tanja Wiles ◽  
Mike Boundy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document