scholarly journals The RabGEF ALS2 is a hypoxia inducible target associated with the acquisition of aggressive traits in tumor cells

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Solange Rivas ◽  
Patricio Silva ◽  
Montserrat Reyes ◽  
Hugo Sepúlveda ◽  
Luis Solano ◽  
...  

AbstractTumor hypoxia and the hypoxia inducible factor-1, HIF-1, play critical roles in cancer progression and metastasis. We previously showed that hypoxia activates the endosomal GTPase Rab5, leading to tumor cell migration and invasion, and that these events do not involve changes in Rab protein expression, suggesting the participation of intermediate activators. Here, we identified ALS2, a guanine nucleotide exchange factor that is upregulated in cancer, as responsible for increased Rab5-GTP loading, cell migration and metastasis in hypoxia. Specifically, hypoxia augmented ALS2 mRNA and protein levels, and these events involved HIF-1α-dependent transcription, as shown by RNAi, pharmacological inhibition, chromatin immunoprecipitation and bioinformatics analyses, which identified a functional HIF-1α-binding site in the proximal promoter region of ALS2. Moreover, ALS2 and Rab5 activity were elevated both in a model of endogenous HIF-1α stabilization (renal cell carcinoma) and by following expression of stable non-hydroxylatable HIF-1α. Strikingly, ALS2 upregulation in hypoxia was required for Rab5 activation, tumor cell migration and invasion, as well as experimental metastasis in C57BL/6 mice. Finally, immunohistochemical analyses in patient biopsies with renal cell carcinoma showed that elevated HIF-1α correlates with increased ALS2 expression. Hence, this study identifies ALS2 as a novel hypoxia-inducible gene associated with tumor progression and metastasis.

BMC Urology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cai Lv ◽  
Yuan Huang ◽  
Qingqing Lei ◽  
Zhenxiang Liu ◽  
Shixing Shen ◽  
...  

Abstract Background The metastasis-associated gene 1 (MTA1) has been extensively reported as a crucial oncogene, and its abnormal expression has been associated with the progression of numerous cancers. However, the role of MTA1 in renal cell carcinoma (RCC) progression and metastasis remains unclear. Herein, we investigated the expression of MTA1 and its role in RCC. Methods 109 matched clear cell RCCs (ccRCCs) and corresponding normal tissue samples were analyzed via immunohistochemistry to test the expression of MTA1. Human A498 cell lines were transfected with pcDNA3.1-Flag (control) or Flag-MTA1 to overexpress MTA1 or with specific interfering RNA (si-MTA1) or specific interfering negative control to knockdown MTA1 expression. Transfected cells were used in wound healing and transwell invasion assay. Quantitative real time polymerase chain reaction was used to assess the effect of MTA1 on MMP2/MMP9 and E-cadherin gene expression. Western blot was used to qualify the phosphorylation of p65. Results Herein, we found a significantly increased expression of MTA1 in 109 ccRCCs, compared to the corresponding normal tissue. In addition, the overexpression of MTA1 in A498 cells facilitated cell migration and invasion, while the down-regulation of MTA1 expression using specific interfering RNA sequences could decrease cell migration and invasion. Furthermore, we showed that MTA1 is up-regulated in ccRCCs, which contributes to the migration and invasion of human kidney cancer cells by mediating the expression of MMP2 and MMP9 through the NF-κB signaling pathway. Similarly, we found that MTA1 could regulate E-cadherin expression in RCCs. Conclusions MTA1 is overexpressed in RCC and is involved in the progression of RCC through NF-κB.


2020 ◽  
Vol Volume 13 ◽  
pp. 11237-11252
Author(s):  
Zhenlin Huang ◽  
Yinghui Ding ◽  
Lu Zhang ◽  
Siyuan He ◽  
Zhankui Jia ◽  
...  

2012 ◽  
Vol 41 (3) ◽  
pp. 805-817 ◽  
Author(s):  
TAKESHI YAMASAKI ◽  
NAOHIKO SEKI ◽  
YASUTOSHI YAMADA ◽  
HIROFUMI YOSHINO ◽  
HIDEO HIDAKA ◽  
...  

FEBS Letters ◽  
2015 ◽  
Vol 589 (16) ◽  
pp. 2136-2145 ◽  
Author(s):  
Rika Nishikawa ◽  
Takeshi Chiyomaru ◽  
Hideki Enokida ◽  
Satoru Inoguchi ◽  
Tomoaki Ishihara ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Feifei Chen ◽  
Junpeng Deng ◽  
Xin Liu ◽  
Wang Li ◽  
Junnian Zheng

Abstract Previous studies indicated a role of hepatocellular carcinoma-related protein-1(HCRP-1) in human cancers, however, its expression pattern in renal cell carcinoma (RCC) and the molecular mechanism of HCRP-1 on cancer progression have not been characterized. In the present study, HCRP-1 expression was examined in a RCC tissue microarray. The negative expression of HCRP-1 was significantly correlated with tumor grade (P = 0.002), TNM stage (P = 0.001) and pT status (P = 0.003). Furthermore, we showed a strong correlation between negative HCRP-1 expression and worse overall and disease-specific survival (P = 0.0003 and P = 0.0012, respectively). Knockdown of HCRP-1 promoted cell migration and invasion in 786-O and OS-RC-2 cell lines. HCRP-1 depletion increased matrix metalloproteinase (MMP)-2 protein level, with increased extracellular signal-regulatedkinase (ERK) phosphorylation, which could be reversed by ERK siRNA or ERK inhibitor, PD98059. Further analysis showed that HCRP-1 knockdown induced epidermal growth factor receptor (EGFR) phosphorylation. Treatment with EGFR inhibitor or EGFR siRNA blocked HCRP-1-mediated up-regulation of EGFR, ERK phosphorylation and MMP-2 expression. In summary, our results showed that negative HCRP-1 expression is an independent prognostic factor for RCC patients and promotes migration and invasion by EGFR-ERK-mediated up-regulation of MMP-2. HCRP-1 may serve as a therapeutic target for RCC.


Sign in / Sign up

Export Citation Format

Share Document