scholarly journals The implication of the air quality pattern in South Korea after the COVID-19 outbreak

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ja-Ho Koo ◽  
Jhoon Kim ◽  
Yun Gon Lee ◽  
Sang Seo Park ◽  
Seoyoung Lee ◽  
...  

AbstractBy using multiple satellite measurements, the changes of the aerosol optical depth (AOD) and nitrogen dioxide (NO2) over South Korea were investigated from January to March 2020 to evaluate the COVID-19 effect on the regional air quality. The NO2 decrease in South Korea was found but not significant, which indicates the effects of spontaneous social distancing under the maintenance of ordinary life. The AODs in 2020 were normally high in January, but they became lower starting from February. Since the atmosphere over Eastern Asia was unusually stagnant in January and February 2020, the AOD decrease in February 2020 clearly reveals the positive effect of the COVID-19. Considering the insignificant NO2 decrease in South Korea and the relatively long lifetime of aerosols, the AOD decrease in South Korea may be more attributed to the improvement of the air quality in neighboring countries. In March, regional atmosphere became well mixed and ventilated over South Korea, contributing to large enhancement of air quality. While the social activity was reduced after the COVID-19 outbreak, the regional meteorology should be also examined significantly to avoid the biased evaluation of the social impact on the change of the regional air quality.

2017 ◽  
Vol 17 (17) ◽  
pp. 10315-10332 ◽  
Author(s):  
Hyun Cheol Kim ◽  
Eunhye Kim ◽  
Changhan Bae ◽  
Jeong Hoon Cho ◽  
Byeong-Uk Kim ◽  
...  

Abstract. The impact of regional emissions (e.g., domestic and international) on surface particulate matter (PM) concentrations in the Seoul metropolitan area (SMA), South Korea, and its sensitivities to meteorology and emissions inventories are quantitatively estimated for 2014 using regional air quality modeling systems. Located on the downwind side of strong sources of anthropogenic emissions, South Korea bears the full impact of the regional transport of pollutants and their precursors. However, the impact of foreign emissions sources has not yet been fully documented. We utilized two regional air quality simulation systems: (1) a Weather Research and Forecasting and Community Multi-Scale Air Quality (CMAQ) system and (2) a United Kingdom Met Office Unified Model and CMAQ system. The following combinations of emissions inventories are used: the Intercontinental Chemical Transport Experiment-Phase B, the Inter-comparison Study for Asia 2010, and the National Institute of Environment Research Clean Air Policy Support System. Partial contributions of domestic and foreign emissions are estimated using a brute force approach, adjusting South Korean emissions to 50 %. Results show that foreign emissions contributed  ∼  60 % of SMA surface PM concentration in 2014. Estimated contributions display clear seasonal variation, with foreign emissions having a higher impact during the cold season (fall to spring), reaching  ∼  70 % in March, and making lower contributions in the summer,  ∼  45 % in September. We also found that simulated surface PM concentration is sensitive to meteorology, but estimated contributions are mostly consistent. Regional contributions are also found to be sensitive to the choice of emissions inventories.


2020 ◽  
Vol 13 (4) ◽  
pp. 2131-2159 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Alexander Cede ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor satellite (launched on 13 October 2017) is a nadir-viewing spectrometer measuring reflected sunlight in the ultraviolet, visible, near-infrared, and shortwave infrared spectral ranges. The measured spectra are used to retrieve total columns of trace gases, including nitrogen dioxide (NO2). For ground validation of these satellite measurements, Pandora spectrometers, which retrieve high-quality NO2 total columns via direct-sun measurements, are widely used. In this study, Pandora NO2 measurements made at three sites located in or north of the Greater Toronto Area (GTA) are used to evaluate the TROPOMI NO2 data products, including a standard Royal Netherlands Meteorological Institute (KNMI) tropospheric and stratospheric NO2 data product and a TROPOMI research data product developed by Environment and Climate Change Canada (ECCC) using a high-resolution regional air quality forecast model (in the air mass factor calculation). It is found that these current TROPOMI tropospheric NO2 data products (standard and ECCC) met the TROPOMI design bias requirement (< 10 %). Using the statistical uncertainty estimation method, the estimated TROPOMI upper-limit precision falls below the design requirement at a rural site but above in the other two urban and suburban sites. The Pandora instruments are found to have sufficient precision (< 0.02 DU) to perform TROPOMI validation work. In addition to the traditional satellite validation method (i.e., pairing ground-based measurements with satellite measurements closest in time and space), we analyzed TROPOMI pixels located upwind and downwind from the Pandora site. This makes it possible to improve the statistics and better interpret the high-spatial-resolution measurements made by TROPOMI. By using this wind-based validation technique, the number of coincident measurements can be increased by about a factor of 5. With this larger number of coincident measurements, this work shows that both TROPOMI and Pandora instruments can reveal detailed spatial patterns (i.e., horizontal distributions) of local and transported NO2 emissions, which can be used to evaluate regional air quality changes. The TROPOMI ECCC NO2 research data product shows improved agreement with Pandora measurements compared to the TROPOMI standard tropospheric NO2 data product (e.g., lower multiplicative bias at the suburban and urban sites by about 10 %), demonstrating benefits from the high-resolution regional air quality forecast model.


2016 ◽  
Vol 189 ◽  
pp. 231-251 ◽  
Author(s):  
Saewung Kim ◽  
Dianne Sanchez ◽  
Mark Wang ◽  
Roger Seco ◽  
Daun Jeong ◽  
...  

South Korea has recently achieved developed country status with the second largest megacity in the world, the Seoul Metropolitan Area (SMA). This study provides insights into future changes in air quality for rapidly emerging megacities in the East Asian region. We present total OH reactivity observations in the SMA conducted at an urban Seoul site (May–June, 2015) and a suburban forest site (Sep, 2015). The total OH reactivity in an urban site during the daytime was observed at similar levels (∼15 s−1) to those previously reported from other East Asian megacity studies. Trace gas observations indicate that OH reactivity is largely accounted for by NOX (∼50%) followed by volatile organic compounds (VOCs) (∼35%). Isoprene accounts for a substantial fraction of OH reactivity among the comprehensive VOC observational dataset (25–47%). In general, observed total OH reactivity can be accounted for by the observed trace gas dataset. However, observed total OH reactivity in the suburban forest area cannot be largely accounted for (∼70%) by the trace gas measurements. The importance of biogenic VOC (BVOCs) emissions and oxidations used to evaluate the impacts of East Asian megacity outflows for the regional air quality and climate contexts are highlighted in this study.


2019 ◽  
Author(s):  
Xiaoyi Zhao ◽  
Debora Griffin ◽  
Vitali Fioletov ◽  
Chris McLinden ◽  
Alexander Cede ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI) on-board the Sentinel-5 Precursor satellite (launched on 13 October 2017) is a nadir-viewing spectrometer measuring reflected sunlight in the ultraviolet, visible, near-infrared, and shortwave infrared spectral ranges. The measured spectra are used to retrieve total columns of trace gases, including nitrogen dioxide (NO2). For ground validation of these satellite measurements, Pandora spectrometers, which retrieve high-quality NO2 total columns via direct-sun measurements, are widely used. In this study, Pandora NO2 measurements made at three sites located in or north of the Greater Toronto Area (GTA) are used to evaluate the TROPOMI NO2 data products, including standard Royal Netherlands Meteorological Institute (KNMI) tropospheric and stratospheric NO2 data product and a TROPOMI research data product developed by Environment and Climate Change Canada (ECCC) using a high-resolution regional air quality forecast model (used in the air mass factor calculation). It is found that these current TROPOMI tropospheric NO2 data products (standard and ECCC) met the TROPOMI design bias requirement. Using the statistical uncertainty estimation method, the estimated TROPOMI upper limit precision falls below the design requirement at a rural site, but above in the other two urban and suburban sites. The Pandora instruments are found to have sufficient precision to perform TROPOMI validation work. In addition to the traditional satellite validation method (i.e., pairing ground-based measurements with satellite measurements closest in time and space), we analyzed TROPOMI pixels located upwind and downwind from the Pandora site. This makes it possible to improve the statistics and better interpret the high-spatial-resolution measurements made by TROPOMI. By using this wind-based validation technique, the number of coincident measurements can be increased by about a factor of five. Using this larger number of coincident measurements, this work shows that both TROPOMI and Pandora instruments can reveal detailed spatial patterns (i.e., horizontal distributions) of local and transported NO2 emissions, which can be used to evaluate regional air quality changes. The TROPOMI ECCC NO2 research data product shows improved agreement with Pandora measurements compared to the TROPOMI standard tropospheric NO2 data product, demonstrating benefits from the high-resolution regional air quality forecast model.


2017 ◽  
Author(s):  
Eunhye Kim ◽  
Changhan Bae ◽  
Hyun Cheol Kim ◽  
Jeong Hoon Cho ◽  
Byeong-Uk Kim ◽  
...  

Abstract. The impact of regional emissions (e.g., domestic and international) on surface particulate matter (PM) concentrations in the Seoul Metropolitan Area (SMA), South Korea and its sensitivities to meteorology and emissions inventories are quantitatively estimated for 2014 using regional air quality modeling systems. Located on the downwind side of strong sources of anthropogenic emissions, South Korea bears the full impact of the regional transport of pollutants and their precursors. However, the impact of foreign emission sources have not yet been fully documented. We utilized two regional air quality simulation systems: (1) a Weather Research and Forecasting and Community Multi-Scale Air Quality (CMAQ) system; and (2) a United Kingdom Met Office Unified Model and CMAQ system. The following combinations of emission inventories are used: the Intercontinental Chemical Transport Experiment-Phase B, Inter-comparison Study for Asia 2010, and the National Institute of Environment Research Clean Air Policy Support System. Partial contributions of domestic and foreign emissions are estimated using a brute force approach, adjusting South Korean emissions to 50 %. Results show that foreign emissions contributed ~ 65 % of SMA surface PM concentration in 2014. Estimated contributions display clear seasonal variation, with foreign emissions having a higher impact during the cold season (Fall to Spring), reaching ~ 80 % in March, and making lower contributions in the summer, ~ 40 % in July. We also found that simulated surface PM concentration is sensitive to meteorology, but estimated contributions are mostly robust. Regional contributions are also found to be sensitive to the choice of emissions inventories.


Author(s):  
Paolo Riva ◽  
James H. Wirth ◽  
Kipling D. Williams

Sign in / Sign up

Export Citation Format

Share Document