scholarly journals Influence of native ureolytic microbial community on biocementation potential of Sporosarcina pasteurii

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Raja Murugan ◽  
G. K. Suraishkumar ◽  
Abhijit Mukherjee ◽  
Navdeep K. Dhami

AbstractMicrobially induced calcium carbonate precipitation (MICP)/Biocementation has emerged as a promising technique for soil engineering applications. There are chiefly two methods by which MICP is applied for field applications including biostimulation and bioaugmentation. Although bioaugmentation strategy using efficient ureolytic biocementing culture of Sporosarcina pasteurii is widely practiced, the impact of native ureolytic microbial communities (NUMC) on CaCO3 mineralisation via S. pasteurii has not been explored. In this paper, we investigated the effect of different concentrations of NUMC on MICP kinetics and biomineral properties in the presence and absence of S. pasteurii. Kinetic analysis showed that the biocementation potential of S. pasteurii is sixfold higher than NUMC and is not significantly impacted even when the concentration of the NUMC is eight times higher. Micrographic results revealed a quick rate of CaCO3 precipitation by S. pasteurii leading to generation of smaller CaCO3 crystals (5–40 µm), while slow rate of CaCO3 precipitation by NUMC led to creation of larger CaCO3 crystals (35–100 µm). Mineralogical results showed the predominance of calcite phase in both sets. The outcome of current study is crucial for tailor-made applications of MICP.

2021 ◽  
Author(s):  
Raja Murugan ◽  
G. K. Suraishkumar ◽  
Abhijit Muhkerjee ◽  
Navdeep K Dhami

Abstract Microbially induced calcium carbonate precipitation (MICP)/Biocementation has emerged as a promising technique for soil engineering applications. There are chiefly two methods by which MICP is applied for field applications including biostimulation and bioaugmentation. Although bioaugmentation strategy using efficient ureolytic biocementing culture of Sporosarcina pasteurii is widely practiced, the impact of native ureolytic microbial communities (NUMC) on CaCO3 mineralisation via S. pasteurii has not been explored. In this paper, we investigated the effect of different concentrations of NUMC on MICP kinetics and biomineral properties in the presence and absence of S. pasteurii. Kinetic analysis showed that the biocementation potential of S. pasteurii is 6-fold higher than the NUMC and is not significantly impacted even when the concentration of the NUMC is eight times higher. Micrographic results revealed a quick rate of CaCO3 precipitation by S. pasteurii led to the generation of smaller CaCO3 crystals (5–40 µm), while the slow rate of CaCO3 precipitation by NUMC led to the creation of larger CaCO3 crystals (35–100 µm). Mineralogical results showed the predominance of the calcite phase in both sets. The outcome of the current study is crucial for tailor-made applications of MICP.


The Analyst ◽  
2016 ◽  
Vol 141 (10) ◽  
pp. 2887-2895 ◽  
Author(s):  
Dustin Harris ◽  
Jyothir Ganesh Ummadi ◽  
Andrew R. Thurber ◽  
Yvan Allau ◽  
Circe Verba ◽  
...  

Chemical and morphological mapping of live bacterial assisted calcium carbonate precipitation using scanning electrochemical microscope (SECM).


2020 ◽  
Vol 10 (13) ◽  
pp. 4538 ◽  
Author(s):  
Johannes Hommel ◽  
Arda Akyel ◽  
Zachary Frieling ◽  
Adrienne J. Phillips ◽  
Robin Gerlach ◽  
...  

Enzymatically induced calcium carbonate precipitation (EICP) is an emerging engineered mineralization method similar to others such as microbially induced calcium carbonate precipitation (MICP). EICP is advantageous compared to MICP as the enzyme is still active at conditions where microbes, e.g., Sporosarcina pasteurii, commonly used for MICP, cannot grow. Especially, EICP expands the applicability of ureolysis-induced calcium carbonate mineral precipitation to higher temperatures, enabling its use in leakage mitigation deeper in the subsurface than previously thought to be possible with MICP. A new conceptual and numerical model for EICP is presented. The model was calibrated and validated using quasi-1D column experiments designed to provide the necessary data for model calibration and can now be used to assess the potential of EICP applications for leakage mitigation and other subsurface modifications.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xiaobing Li ◽  
Chunshun Zhang ◽  
Hongbin Xiao ◽  
Weichang Jiang ◽  
Junfeng Qian ◽  
...  

Most of the research studies on the improvement of expansive soils are focused on reducing their expansive properties; however, there are few studies on the impact of the soil compressibility after the improvement. In this paper, through indoor high-pressure consolidation tests, the recent microbial-induced calcium carbonate precipitation (MICP) technology is studied to improve the compression characteristics of the expansive soil. The significant effect of different microbial concentrations (achieved by different number of treatments) on the compression deformation is revealed with the hyperbolic function that involves two parameters with clear physical meanings. In particular, after 6 times of treatment with the microbial solution, the compression characteristics of the expansive soil reach the best improvement effect; continuing to increase the number of microbial treatments is, otherwise, not conducive to improving the soil compression performance. Also, a dramatical increase of the structural strength of the microbial-treated expansive soil is presented and investigated. Moreover, we performed a scanning electron microscope (SEM) experiment and confirmed the existence of crystals due to mineralization. This study shows that MICP is an effective and environmentally friendly means of reducing the compressibility of the expansive soil.


Sign in / Sign up

Export Citation Format

Share Document