scholarly journals Optimization of anti-ADAMTS13 antibodies for the treatment of ADAMTS13-related bleeding disorder in patients receiving circulatory assist device support

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshihiro Ito ◽  
Takeharu Minamitani ◽  
Masaki Hayakawa ◽  
Ryota Otsubo ◽  
Hiroki Akiba ◽  
...  

AbstractADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type-1 motif 13)-related bleeding disorder has been frequently observed as a life-threatening clinical complication in patients carrying a circulatory assist device. Currently, treatment modalities for the bleeding disorder are very limited and not always successful. To address the unmet medical need, we constructed humanized antibodies of mouse anti-ADAMTS13 antibody A10 (mA10) by using complementarity-determining region (CDR) grafting techniques with human antibody frameworks, 8A7 and 16E8. The characteristics of the two humanized A10 antibodies, namely A10/8A7 and A10/16E8, were assessed in vitro and in silico. Among the two humanized A10 antibodies, the binding affinity of A10/16E8 to ADAMTS13 was comparable to that of mA10 and human-mouse chimeric A10. In addition, A10/16E8 largely inhibited the ADAMTS13 activity in vitro. The results indicated that A10/16E8 retained the binding affinity and inhibitory activity of mA10. To compare the antibody structures, we performed antibody structure modeling and structural similarity analysis in silico. As a result, A10/16E8 showed higher structural similarity to mA10, compared with A10/8A7, suggesting that A10/16E8 retains a native structure of mA10 as well as its antigen binding affinity and activity. A10/16E8 has great potential as a therapeutic agent for ADAMTS13-related bleeding disorder.

2021 ◽  
Author(s):  
Toshihiro Ito ◽  
Takeharu Minamitani ◽  
Masaki Hayakawa ◽  
Ryota Otsubo ◽  
Hiroki Akiba ◽  
...  

Abstract ADAMTS13 (a disintegrin-like and metalloproteinase with thrombospondin type-1 motif 13)-related bleeding disorder has been frequently observed as a life-threatening clinical complication in patients carrying a circulatory assist device. Currently, treatment modalities for the bleeding disorder are very limited and not always successful. To address the unmet medical need, we constructed humanized antibodies of mouse anti-ADAMTS13 antibody A10 (mA10) by using complementarity-determining region (CDR) grafting techniques with human antibody frameworks, 8A7 and 16E8. The characteristics of the two humanized A10 antibodies, namely A10/8A7 and A10/16E8, were assessed in vitro and in silico. Among the two humanized A10 antibodies, the binding affinity of A10/16E8 to ADAMTS13 was comparable to that of mA10 and human-mouse chimeric A10. In addition, A10/16E8 largely inhibited the ADAMTS13 activity in vitro. The results indicated that A10/16E8 retained the binding affinity and inhibitory activity of mA10. To compare the antibody structures, we performed antibody structure modeling and structural similarity analysis in silico. As a result, A10/16E8 showed higher structural similarity to mA10, compared with A10/8A7, suggesting that A10/16E8 retains a native structure of mA10 as well as its antigen binding affinity and activity. A10/16E8 has great potential as a therapeutic agent for ADAMTS13-related bleeding disorder.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brahmaiah Pendyala ◽  
Ankit Patras ◽  
Chandravanu Dash

In the 21st century, we have witnessed three coronavirus outbreaks: SARS in 2003, MERS in 2012, and the ongoing pandemic coronavirus disease 2019 (COVID-19). The search for efficient vaccines and development and repurposing of therapeutic drugs are the major approaches in the COVID-19 pandemic research area. There are concerns about the evolution of mutant strains (e.g., VUI – 202012/01, a mutant coronavirus in the United Kingdom), which can potentially reduce the impact of the current vaccine and therapeutic drug development trials. One promising approach to counter the mutant strains is the “development of effective broad-spectrum antiviral drugs” against coronaviruses. This study scientifically investigates potent food bioactive broad-spectrum antiviral compounds by targeting main protease (Mpro) and papain-like protease (PLpro) proteases of coronaviruses (CoVs) using in silico and in vitro approaches. The results reveal that phycocyanobilin (PCB) shows potential inhibitor activity against both proteases. PCB had the best binding affinity to Mpro and PLpro with IC50 values of 71 and 62 μm, respectively. Also, in silico studies with Mpro and PLpro enzymes of other human and animal CoVs indicate broad-spectrum inhibitor activity of the PCB. As with PCB, other phycobilins, such as phycourobilin (PUB), phycoerythrobilin (PEB), and phycoviolobilin (PVB) show similar binding affinity to SARS-CoV-2 Mpro and PLpro.


Author(s):  
Aldina Amalia Nur Shadrina ◽  
Yetty Herdiyati ◽  
Ika Wiani ◽  
Mieke Hemiawati Satari ◽  
Dikdik Kurnia

Background: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products like Ocimum basilicum will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. Objective: The research objective is to isolate the secondary metabolite of O. basilicum extract that has activity against S. sanguinis through in vitro and in silico analysis. Methods: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed used PyRx 0.8 program. Results: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 μg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. Conclusion: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2949
Author(s):  
Yoshiro Hanyu ◽  
Yuto Komeiji ◽  
Mieko Kato

Monoclonal antibodies with high affinity and specificity are essential for research and clinical purposes, yet remain difficult to produce. Agretope peptides that can potentiate antigen-specific antibody production have been reported recently. Here, we screened in silico for peptides with higher affinity against the agretope binding pocket in the MHC-II. The screening was based on the 3D crystal structure of a complex between MHC-II and a 14-mer peptide consisting of ovalbumin residues 323–339. Using this 14-mer peptide as template, we constructed a library of candidate peptides and screened for those that bound tightly to MHC-II. Peptide sequences that exhibited a higher binding affinity than the original ovalbumin peptide were identified. The peptide with the highest binding affinity was synthesized and its ability to boost antigen-specific antibody production in vivo and in vitro was assessed. In both cases, antigen-specific IgG antibody production was potentiated. Monoclonal antibodies were established by in vitro immunization using this peptide as immunostimulant, confirming the usefulness of such screened peptides for monoclonal antibody production.


2020 ◽  
Vol 15 (9) ◽  
pp. 1934578X2095326
Author(s):  
Jai-Sing Yang ◽  
Jo-Hua Chiang ◽  
Shih‑Chang Tsai ◽  
Yuan-Man Hsu ◽  
Da-Tian Bau ◽  
...  

The coronavirus disease 2019 (COVID‐19) outbreak caused by the 2019 novel coronavirus (2019-nCOV) is becoming increasingly serious. In March 2019, the Food and Drug Administration (FDA) designated remdesivir for compassionate use to treat COVID-19. Thus, the development of novel antiviral agents, antibodies, and vaccines against COVID-19 is an urgent research subject. Many laboratories and research organizations are actively investing in the development of new compounds for COVID-19. Through in silico high-throughput virtual screening, we have recently identified compounds from the compound library of Natural Products Research Laboratories (NPRL) that can bind to COVID-19 3Lpro polyprotein and block COVID-19 3Lpro activity through in silico high-throughput virtual screening. Curcuminoid derivatives (including NPRL334, NPRL339, NPRL342, NPRL346, NPRL407, NPRL415, NPRL420, NPRL472, and NPRL473) display strong binding affinity to COVID-19 3Lpro polyprotein. The binding site of curcuminoid derivatives to COVID-19 3Lpro polyprotein is the same as that of the FDA-approved human immunodeficiency virus protease inhibitor (lopinavir) to COVID-19 3Lpro polyprotein. The binding affinity of curcuminoid derivatives to COVID-19 3Lpro is stronger than that of lopinavir and curcumin. Among curcuminoid derivatives, NPRL-334 revealed the strongest binding affinity to COVID-19 3Lpro polyprotein and is speculated to have an anti-COVID-19 effect. In vitro and in vivo ongoing experiments are currently underway to confirm the present findings. This study sheds light on the drug design for COVID-19 3Lpro polyprotein. Basing on lead compound development, we provide new insights on inhibiting COVID-19 attachment to cells, reducing COVID-19 infection rate and drug side effects, and increasing therapeutic success rate.


2020 ◽  
Vol 3 (4) ◽  
pp. 989-1000
Author(s):  
Mustapha Abdullahi ◽  
Shola Elijah Adeniji

AbstractMolecular docking simulation of thirty-five (35) molecules of N-(2-phenoxy)ethyl imidazo[1,2-a]pyridine-3-carboxamide (IPA) with Mycobacterium tuberculosis target (DNA gyrase) was carried out so as to evaluate their theoretical binding affinities. The chemical structure of the molecules was accurately drawn using ChemDraw Ultra software, then optimized at density functional theory (DFT) using Becke’s three-parameter Lee–Yang–Parr hybrid functional (B3LYP/6-311**) basis set in a vacuum of Spartan 14 software. Subsequently, the docking operation was carried out using PyRx virtual screening software. Molecule 35 (M35) with the highest binding affinity of − 7.2 kcal/mol was selected as the lead molecule for structural modification which led to the development of four (4) newly hypothetical molecules D1, D2, D3 and D4. In addition, the D4 molecule with the highest binding affinity value of − 9.4 kcal/mol formed more H-bond interactions signifying better orientation of the ligand in the binding site compared to M35 and isoniazid standard drug. In-silico ADME and drug-likeness prediction of the molecules showed good pharmacokinetic properties having high gastrointestinal absorption, orally bioavailable, and less toxic. The outcome of the present research strengthens the relevance of these compounds as promising lead candidates for the treatment of multidrug-resistant tuberculosis which could help the medicinal chemists and pharmaceutical professionals in further designing and synthesis of more potent drug candidates. Moreover, the research also encouraged the in vivo and in vitro evaluation study for the proposed designed compounds to validate the computational findings.


2020 ◽  
Author(s):  
Safaet Alam ◽  
Nazim Uddin Emon ◽  
Mohammad A. Rashid ◽  
Mohammad Arman ◽  
Mohammad Rashedul Haque

AbstractBackgroundColocasia gigantea is locally named as kochu and also better known due to its various healing power. This research is to investigate the antidiarrheal, antimicrobial, and antioxidant possibilities of the methanol soluble extract of Colocasia gigantea.MethodsAntidiarrheal investigation was performed by using in vivo castor oil induced diarrheal method where as in vitro antimicrobial and antioxidant investigation have been implemented by disc diffusion and DPPH scavenging method respectively. Moreover, in silico studies were followed by molecular docking analysis of several secondary metabolites were appraised with Schrödinger-Maestro v 11.1.ResultsThe induction of plant extract (200 and 400 mg/kg, b.w, p.o), the castor oil mediated diarrhea has been minimized 19.05 % (p < 0.05) and 42.86 % (p < 0.001) respectively. The methanolic extract of C. gigantea showed mild sensitivity against almost all the tested strains but it shows high consistency of phenolic content and furthermore yielded 67.68 μg/mL of IC50 value in the DPPH test. The higher and lower binding affinity was shown in beta-amyrin and monoglyceryl stearic acid against the kappa-opioid receptor (PDB ID: 4DJH) with a docking score of -3.28 kcal/mol and -6.64 kcal/mol respectively. In the antimicrobial investigation, Penduletin and Beta-Amyrin showed the highest and lowest binding affinity against the selected receptors with the docking score of -8.27 kcal/mol and -1.66 kcal/mol respectively.ConclusionThe results of our scientific research reflect that the methanol soluble extract of C. gigantea is safe which may provide possibilities of alleviation of diarrhea and as a potential wellspring of antioxidants which can be considered as an alternate source for exploration of new medicinal products.


2019 ◽  
Vol 2 (1) ◽  
pp. 37-48
Author(s):  
Ruswanto Ruswanto

Isoniazid merupakan obat antituberkulosis yang memiliki aktivitas antimikobakterial yang baik yang bekerja secara aktif dengan menghambat biosintesis asam mikolat. Telah dilakukan pengujian In Vitro pada senyawa N’-(4-Methylbenzoyl) Isonicotinohydrazide N’-(4-Chlorobenzoyl) Isonicotinohydrazide dan N’-(3,5-Dinitrobenzoyl) Isonicotinohydrazide terhadap Mycobacterium tuberculosis H37Rv, bakteri gram positif serta bakteri gram negatif dengan menggunakan metode sumuran dan pada pengujian Mycobacterium tuberculosis H37Rv menggunakan metode REMA (Resazurin Microtiter Assay). Didapat nilai MIC terbaik pada senyawa N’-(3,5-Dinitrobenzoyl) Isonicotinohydrazide memiliki potensi tinggi sebagai antibakteri dengan nilai MIC 0,169 ppm terhadap bakteri e.colli. Ketiga senyawa yang diujikan pada  Mycobacterium tuberculosis H37Rv memiliki kemampuan sebagai anti tuberkulosis tetapi isoniazid lebih baik dari senyawa uji. Senyawa N’-(3,5-Dinitrobenzoyl) Isonicotinohydrazide di dockingkan pada reseptor 1KZN memiliki binding affinity yang lebih kecil dibandingkan senyawa pembanding yaitu isoniazid sebesar -6,89 kkal/mol.


2020 ◽  
Author(s):  
Naruka Solomon Yakubu ◽  
Olanike Catherine Poyi ◽  
Ezikiel Olabisi Afolabi

Abstract Computer-aided drug design has been an effective strategy and approach to discover, develop, analyze, accelerate and economize design and development of drugs and biologically active molecules. A total of twelve analogues of chloroquine (CQ) and hydroxychloroquine (HCQ) were designed and virtually analyzed using PyRx software, Molinspiration, Swiss ADME, Swiss-Target Prediction software and ProTox-II-Prediction of toxicity platform. Based on the docking studies carried out using Autodock vina, five analogues; H-368 (-6.0 Kcal/mol), H-372 (--6.0 Kcal/mol), H-156 (-5.9 Kcal/mol), H-139 (-5.7 Kcal/mol), C-136 (-5.7 Kcal/mol) exhibited higher binding affinity compared to HCQ(-5.5 Kcal/mol), while all twelve analogues exhibited higher binding affinity compared to CQ (-4.5Kcal/mol). In silico analysis of toxicity profile of this analogues shows a lower potential to toxicity and a comparable activity on some major isoforms of cytochrome P450. But unlike the parent molecules, both H-139 and H-156 are substrates of P-glycoproteins (P-gp) which implies that these analogues possess high clearance and less pharmacokinetic-related drug-drug interactions compared to the parent molecules. Herein we propose these analogues as potential inhibitors or lead compounds against the coronavirus with a view of conducting more molecular dynamic simulations, synthesizing and conducting in vitro studies on them.


Sign in / Sign up

Export Citation Format

Share Document