scholarly journals A low-cost open-source 5-choice operant box system optimized for electrophysiology and optophysiology in mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sampath K. T. Kapanaiah ◽  
Bastiaan van der Veen ◽  
Daniel Strahnen ◽  
Thomas Akam ◽  
Dennis Kätzel

AbstractOperant boxes enable the application of complex behavioural paradigms to support circuit neuroscience and drug discovery research. However, commercial operant box systems are expensive and often not optimised for combining behaviour with neurophysiology. Here we introduce a fully open-source Python-based operant-box system in a 5-choice design (pyOS-5) that enables assessment of multiple cognitive and affective functions. It is optimized for fast turn-over between animals, and for testing of tethered mice for simultaneous physiological recordings or optogenetic manipulation. For reward delivery, we developed peristaltic and syringe pumps based on a stepper motor and 3D-printed parts. Tasks are specified using a Python-based syntax implemented on custom-designed printed circuit boards that are commercially available at low cost. We developed an open-source graphical user interface (GUI) and task definition scripts to conduct assays assessing operant learning, attention, impulsivity, working memory, or cognitive flexibility, alleviating the need for programming skills of the end user. All behavioural events are recorded with millisecond resolution, and TTL-outputs and -inputs allow straightforward integration with physiological recordings and closed-loop manipulations. This combination of features realizes a cost-effective, nose-poke-based operant box system that allows reliable circuit-neuroscience experiments investigating correlates of cognition and emotion in large cohorts of subjects.

Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 793
Author(s):  
Uroš Zupančič ◽  
Joshua Rainbow ◽  
Pedro Estrela ◽  
Despina Moschou

Printed circuit boards (PCBs) offer a promising platform for the development of electronics-assisted biomedical diagnostic sensors and microsystems. The long-standing industrial basis offers distinctive advantages for cost-effective, reproducible, and easily integrated sample-in-answer-out diagnostic microsystems. Nonetheless, the commercial techniques used in the fabrication of PCBs produce various contaminants potentially degrading severely their stability and repeatability in electrochemical sensing applications. Herein, we analyse for the first time such critical technological considerations, allowing the exploitation of commercial PCB platforms as reliable electrochemical sensing platforms. The presented electrochemical and physical characterisation data reveal clear evidence of both organic and inorganic sensing electrode surface contaminants, which can be removed using various pre-cleaning techniques. We demonstrate that, following such pre-treatment rules, PCB-based electrodes can be reliably fabricated for sensitive electrochemical biosensors. Herein, we demonstrate the applicability of the methodology both for labelled protein (procalcitonin) and label-free nucleic acid (E. coli-specific DNA) biomarker quantification, with observed limits of detection (LoD) of 2 pM and 110 pM, respectively. The proposed optimisation of surface pre-treatment is critical in the development of robust and sensitive PCB-based electrochemical sensors for both clinical and environmental diagnostics and monitoring applications.


2020 ◽  
Author(s):  
Robert Winkler

<div>Air, water, and soil are essential for terrestrial life, but pollution, overexploitation, and climate change jeopardize the availability of these primary resources. Thus, assuring human health and food production requires efficient strategies and technologies for environmental protection. Knowing key parameters such as soil moisture, air, and water quality is essential for smart farming and urban development. </div><div>The MeteoMex project aims to build simple hardware kits and their integration into current Internet-of-Things (IoT) platforms. This paper shows the use of low-end Wemos D1 mini boards to connect environmental sensors to the open-source platform ThingsBoard. Two printed circuit boards (PCB) were designed for mounting components. Analog, digital and I<sup>2</sup>C sensors are supported. The Wemos ESP8266 microchip provides WiFi capability and can be programmed with the Arduino IDE. Application examples for the MeteoMex aeria and terra kits demonstrate their functionality for air quality, soil, and climate monitoring.</div><div>Further, a prototype for monitoring wastewater treatment is shown, which exemplifies the capabilities of the Wemos board for signal processing. The data are stored in a PostgreSQL database, which enables data mining. The MeteoMex IoT system is highly scalable and of low cost, which makes it suitable for deployment in agriculture 4.0, industries, and public areas. </div><div>Circuit drawings, PCB layouts, and code examples are free to download from https://github.com/robert-winkler/MeteoMex.</div>


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 001918-001948
Author(s):  
Catherine Bunel ◽  
Stephane Bellenger ◽  
Sebastien Leruez ◽  
Lionel Lenoir ◽  
Franck Murray

Thanks to their 3D structure, the Silicon Capacitors offer drastic improvements in terms of performances compared to the commonly used ceramic and tantalum capacitors. They are also a smart way to reduce the application volume and increase the IP protection level. With the increasing complexity in the die and package designs and ever increasing cost pressure in today's microelectronic industry, IPDIA is offering for a large range of products, customized or standard components, a low cost packaging solution: the Wafer Level Chip Scale Packaging. While wire-bond interface may remain the preference for many applications, face-down direct chip attachment has gained wide acceptance. More than interacting on electrical functionality, WLCSP is interacting on mechanical and thermo mechanical properties with a higher miniaturization and a transfer directly on printed circuit boards without additional packaging steps. This paper presents the main characteristics of the 3D-IPD advanced technology emphasizing on its capability and advantages versus discrete components illustrated by different applications using ultra-thin IPD ( down to 60 μm ) and WLCSP.


2017 ◽  
Vol 56 (2) ◽  
pp. 026108
Author(s):  
Jau-Ji Jou ◽  
Tien-Tsorng Shih ◽  
Cheng-Ying Wu ◽  
Zhe-Xian Su

2017 ◽  
Vol 9 (7) ◽  
pp. 1533-1540 ◽  
Author(s):  
Xi Chen ◽  
Zhen Wei ◽  
Dan Wu ◽  
Long Yang ◽  
Guang Fu

A compact three-dimensional (3D) circularly polarized (CP) microstrip antenna is presented in this paper. The antenna adopts three low-cost printed circuit boards to form an integrated and closed 3D structure, and the radiation patch and the feed patches are etched on the surface of that. A crossed slot is cut on the radiation patch to miniaturize the antenna, and triangular feed patches are introduced to increase the bandwidths. In addition, because of the utilization of a low-loss series feed line, the antenna has a high efficiency of more than 95%. A prototype of the antenna is measured to validate the method. The dimensions of the antenna is 0.064λ × 0.36λ (λ is the wavelength in free space at 1.2 GHz). The results indicate that the impedance bandwidth for voltage standing wave ratio ≤ 2 reaches 23%, and the bandwidth for axial ratio (AR) ≤ 3 dB reaches 10.1%. In the overlap band, the gains are > 4.5dBic. Additionally, the 3 dB beamwidth is more than 114°, and the beamwidth for AR ≤ 3 dB is more than 131° at 1.2 GHz.


Sign in / Sign up

Export Citation Format

Share Document