scholarly journals Modulation of the electrical double layer in metals and conducting polymers

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jorge Morgado

AbstractThe electrical double layer (EDL) formed at the interface between various materials and an electrolyte has been studied for a long time. In particular, the EDL formed at metal/electrolyte interfaces is central in electrochemistry, with a plethora of applications ranging from corrosion to batteries to sensors. The discovery of highly conductive conjugated polymers has opened a new area of electronics, involving solution-based or solution-interfaced devices, and in particular in bioelectronics, namely for use in deep-brain stimulation electrodes and devices to measure and condition cells activity, as these materials offer new opportunities to interface cells and living tissues. Here, it is shown that the potential associated to the double layer formed at the interface between either metals or conducting polymers and electrolytes is modified by the application of an electric field along the conductive substrate. The EDL acts as a transducer of the electric field applied to the conductive substrate. This observation has profound implications in the modelling and operation of devices relying on interfaces between conductive materials (metals and conjugated polymers) and electrolytes, which encompasses various application fields ranging from medicine to electronics.

2019 ◽  
Author(s):  
Divya Bohra ◽  
Jehanzeb Chaudhry ◽  
Thomas Burdyny ◽  
Evgeny Pidko ◽  
wilson smith

<p>The environment of a CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) catalyst is intimately coupled with the surface reaction energetics and is therefore a critical aspect of the overall system performance. The immediate reaction environment of the electrocatalyst constitutes the electrical double layer (EDL) which extends a few nanometers into the electrolyte and screens the surface charge density. In this study, we resolve the species concentrations and potential profiles in the EDL of a CO<sub>2</sub>ER system by self-consistently solving the migration, diffusion and reaction phenomena using the generalized modified Poisson-Nernst-Planck (GMPNP) equations which include the effect of volume exclusion due to the solvated size of solution species. We demonstrate that the concentration of solvated cations builds at the outer Helmholtz plane (OHP) with increasing applied potential until the steric limit is reached. The formation of the EDL is expected to have important consequences for the transport of the CO<sub>2</sub> molecule to the catalyst surface. The electric field in the EDL diminishes the pH in the first 5 nm from the OHP, with an accumulation of protons and a concomitant depletion of hydroxide ions. This is a considerable departure from the results obtained using reaction-diffusion models where migration is ignored. Finally, we use the GMPNP model to compare the nature of the EDL for different alkali metal cations to show the effect of solvated size and polarization of water on the resultant electric field. Our results establish the significance of the EDL and electrostatic forces in defining the local reaction environment of CO<sub>2</sub> electrocatalysts.</p>


2000 ◽  
Vol 232 (1) ◽  
pp. 141-148 ◽  
Author(s):  
V.N. Shilov ◽  
A.V. Delgado ◽  
F. González-Caballero ◽  
J. Horno ◽  
J.J. López-García ◽  
...  

Soft Matter ◽  
2014 ◽  
Vol 10 (42) ◽  
pp. 8512-8523 ◽  
Author(s):  
Pranab Kumar Mondal ◽  
Uddipta Ghosh ◽  
Aditya Bandopadhyay ◽  
Debabrata DasGupta ◽  
Suman Chakraborty

The dynamics of a binary fluid mixture under the action of time-periodic electroosmosis is investigated.


2020 ◽  
Vol 3 (3) ◽  
pp. 414-420 ◽  
Author(s):  
Yufan Zhang ◽  
Ting Ye ◽  
Ming Chen ◽  
Zachary A.H. Goodwin ◽  
Guang Feng ◽  
...  

2019 ◽  
Author(s):  
Divya Bohra ◽  
Jehanzeb Chaudhry ◽  
Thomas Burdyny ◽  
Evgeny Pidko ◽  
wilson smith

<p>The environment of a CO<sub>2</sub> electroreduction (CO<sub>2</sub>ER) catalyst is intimately coupled with the surface reaction energetics and is therefore a critical aspect of the overall system performance. The immediate reaction environment of the electrocatalyst constitutes the electrical double layer (EDL) which extends a few nanometers into the electrolyte and screens the surface charge density. In this study, we resolve the species concentrations and potential profiles in the EDL of a CO<sub>2</sub>ER system by self-consistently solving the migration, diffusion and reaction phenomena using the generalized modified Poisson-Nernst-Planck (GMPNP) equations which include the effect of volume exclusion due to the solvated size of solution species. We demonstrate that the concentration of solvated cations builds at the outer Helmholtz plane (OHP) with increasing applied potential until the steric limit is reached. The formation of the EDL is expected to have important consequences for the transport of the CO<sub>2</sub> molecule to the catalyst surface. The electric field in the EDL diminishes the pH in the first 5 nm from the OHP, with an accumulation of protons and a concomitant depletion of hydroxide ions. This is a considerable departure from the results obtained using reaction-diffusion models where migration is ignored. Finally, we use the GMPNP model to compare the nature of the EDL for different alkali metal cations to show the effect of solvated size and polarization of water on the resultant electric field. Our results establish the significance of the EDL and electrostatic forces in defining the local reaction environment of CO<sub>2</sub> electrocatalysts.</p>


2016 ◽  
Vol 18 (31) ◽  
pp. 21852-21864 ◽  
Author(s):  
Guillermo Iván Guerrero-García ◽  
Enrique González-Tovar ◽  
Manuel Quesada-Pérez ◽  
Alberto Martín-Molina

The relevance of multivalent coions in the electrical double layer of charged colloids containing only monovalent counterions at high electrolyte concentrations is evidenced.


Sign in / Sign up

Export Citation Format

Share Document