conductive substrate
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 44)

H-INDEX

20
(FIVE YEARS 5)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jorge Morgado

AbstractThe electrical double layer (EDL) formed at the interface between various materials and an electrolyte has been studied for a long time. In particular, the EDL formed at metal/electrolyte interfaces is central in electrochemistry, with a plethora of applications ranging from corrosion to batteries to sensors. The discovery of highly conductive conjugated polymers has opened a new area of electronics, involving solution-based or solution-interfaced devices, and in particular in bioelectronics, namely for use in deep-brain stimulation electrodes and devices to measure and condition cells activity, as these materials offer new opportunities to interface cells and living tissues. Here, it is shown that the potential associated to the double layer formed at the interface between either metals or conducting polymers and electrolytes is modified by the application of an electric field along the conductive substrate. The EDL acts as a transducer of the electric field applied to the conductive substrate. This observation has profound implications in the modelling and operation of devices relying on interfaces between conductive materials (metals and conjugated polymers) and electrolytes, which encompasses various application fields ranging from medicine to electronics.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 183
Author(s):  
Panagiotis S. Karagiannopoulos ◽  
Nikolaos M. Manousakis ◽  
Constantinos S. Psomopoulos

The design of longer-lasting products, such as domestic electric appliances, is a key-stone approach of the circular economy to reduce the use of non-reusable materials and the number of wastes to be managed at the end of the product’s life as well as to extend it. The manufacturing of modern electric appliances includes the incorporation of printed circuit boards (PCBs). PCBs provide mechanical support and electrically connect electrical or electronic components using conductive trackpads and other features etched from one or more sheet layers of copper laminated onto and/or between sheet layers of a non-conductive substrate. This paper proposes a PCB maintenance framework, fully compliant with the “Right to Repair” concept, considering the impact of their aging failures based on measurements made on them, as well as the repair and replacement costs of their components. Herein, we present an algorithm that assesses the problem of handling the repair and replacement cost corresponding to specific failures while ensuring that the total cost of repair does not exceed a predefined value. This is achieved through an integer linear programming (ILP) formulation which maximizes the benefit to the life expectancy, Li, of an appliance, constrained by a customer’s limited budget. The proposed methodology is tested with different PCBs and considers different types of appliances. More specifically, two cases concerning PCBs of washing and dishwasher machines are studied to examine the dependency of the solutions on the aging rate of their various components. The simulation results show that considering a medium budget, after 3 years, we can achieve a health benefit of 92.4% for a washing machine’s PCB, while for a dishwasher’s PCB, the health benefit drops to 86.3%.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 165
Author(s):  
Shiyun Meng ◽  
Mahmoud Rouabhia ◽  
Ze Zhang

Research on the cellular response to electrical stimulation (ES) and its mechanisms focusing on potential clinic applications has been quietly intensified recently. However, the unconventional nature of this methodology has fertilized a great variety of techniques that make the interpretation and comparison of experimental outcomes complicated. This work reviews more than a hundred publications identified mostly from Medline, categorizes the techniques, and comments on their merits and weaknesses. Electrode-based ES, conductive substrate-mediated ES, and noninvasive stimulation are the three principal categories used in biomedical research and clinic. ES has been found to enhance cell proliferation, growth, migration, and stem cell differentiation, showing an important potential in manipulating cellular activities in both normal and pathological conditions. However, inappropriate parameters or setup can have negative effects. The complexity of the delivered electric signals depends on how they are generated and in what form. It is also difficult to equate one set of parameters with another. Mechanistic studies are rare and badly needed. Even so, ES in combination with advanced materials and nanotechnology is developing a strong footing in biomedical research and regenerative medicine.


2021 ◽  
Vol 44 ◽  
pp. 103417
Author(s):  
Bogale Abebe Mola ◽  
G. Mani ◽  
Mohan Reddy Pallavolu ◽  
N. Ramesh Reddy ◽  
Norah Salem Alsaiari ◽  
...  
Keyword(s):  
Ni Foam ◽  

2021 ◽  
pp. 138806
Author(s):  
C. Zanca ◽  
V. Piazza ◽  
S. Agnello ◽  
B. Patella ◽  
F. Ganci ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 719-725
Author(s):  
Bu‐Yan Shi ◽  
Yuan Huang ◽  
Li‐Wen Jiang ◽  
Mahabubur Chowdhury ◽  
Hong Liu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longhua Tang ◽  
Binoy Paulose Nadappuram ◽  
Paolo Cadinu ◽  
Zhiyu Zhao ◽  
Liang Xue ◽  
...  

AbstractQuantum tunnelling offers a unique opportunity to study nanoscale objects with atomic resolution using electrical readout. However, practical implementation is impeded by the lack of simple, stable probes, that are required for successful operation. Existing platforms offer low throughput and operate in a limited range of analyte concentrations, as there is no active control to transport molecules to the sensor. We report on a standalone tunnelling probe based on double-barrelled capillary nanoelectrodes that do not require a conductive substrate to operate unlike other techniques, such as scanning tunnelling microscopy. These probes can be used to efficiently operate in solution environments and detect single molecules, including mononucleotides, oligonucleotides, and proteins. The probes are simple to fabricate, exhibit remarkable stability, and can be combined with dielectrophoretic trapping, enabling active analyte transport to the tunnelling sensor. The latter allows for up to 5-orders of magnitude increase in event detection rates and sub-femtomolar sensitivity.


Sign in / Sign up

Export Citation Format

Share Document