volume conduction
Recently Published Documents


TOTAL DOCUMENTS

148
(FIVE YEARS 43)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 7 (4) ◽  
pp. 287-291
Author(s):  
Venkateshwarla Rama Raju

Multineural spikes were acquired with a multisite electrode placed in the hippocampus pyramidal cell layer of non-primate anesthetized snitch animals. If the impedance of each electrode-site is relatively low and the distance amongst electrode sites is appropriately miniatured, a spike generated by a neuron is parallelly recorded at multielectrode sites with different amplitudes. The covariance between the spike of the at each electrode-point and a template was computed as a damping-factor due to the volume conduction of the spike from the neuron to electrode-site. Computed damping factors were vectorized and analyzed by simple but elegant hierarchical-clustering using a multidimensional statistical-test. Since a cluster of damping vectors was shown to correspond to an antidromically identified neuron, spikes of distinct neurons are classified by suggesting to the scatterings of damping vectors. Errors in damping vector computing due to partially overlapping spikes were minimized by successively subtracting preceding spikes from raw data. Clustering errors due to complex-spike-bursts (i.e., spikes with variable-amplitudes) were prevented by detecting such bursts and using only the first spike of a burst for clustering.


2021 ◽  
pp. 155005942110627
Author(s):  
Nobutaka Mukae ◽  
Takafumi Shimogawa ◽  
Ayumi Sakata ◽  
Taira Uehara ◽  
Hiroshi Shigeto ◽  
...  

Objective: Previous reports on the simultaneous recording of electroencephalography (EEG) and electrocorticography (ECoG) have demonstrated that, in patients with temporal lobe epilepsy (TLE), ictal ECoG discharges with an amplitude as high as 1000 μV originating from the medial temporal lobe could not be recorded on EEG. In contrast, ictal EEG discharges were recorded after ictal ECoG discharges propagated to the lateral temporal lobe. Here, we report a case of TLE in which the ictal EEG discharges, corresponding to ictal ECoG discharges confined to the medial temporal lobe, were recorded. Case report: In the present case, ictal EEG discharges were hardly recognized when the amplitude of the ECoG discharges was less than 1500 μV. During the evolution and burst suppression phase, corresponding to highly synchronized ECoG discharges with amplitudes greater than 1500 to 2000 μV, rhythmic negative waves with the same frequency were clearly recorded both on the lateral temporal lobe and scalp. The amplitude of the lateral temporal ECoG was approximately one-tenth of that of the medial temporal ECoG. The amplitude of the scalp EEG was approximately one-tenth of that of the lateral temporal ECoG. Conclusions: Highly synchronized ictal ECoG discharges with high amplitude of greater than 1500 to 2000 μV in the medial temporal lobe could be recorded on the scalp as ictal EEG discharges via volume conduction.


Author(s):  
Xuesong Luo ◽  
Shaoping Wang ◽  
Seward B Rutkove ◽  
Benjamin Sanchez

Abstract Objective: Needle electromyography (EMG) is used to study the electrical behavior of myofiber properties in patients with neuromuscular disorders. However, due to the complexity of electrical potential spatial propagation in nonhomogeneous diseased muscle, a comprehensive understanding of volume conduction effects remains elusive. Here, we develop a framework to study the conduction effect of extracellular abnormalities {and electrode positioning} on extracellular local field potential (LFP) recordings. Methods: The framework describes the macroscopic conduction of electrical potential in an isotropic, nonhomogeneous (i.e., two tissue) model. Numerical and finite element model simulations are provided to study the conduction effect in prototypical monopolar EMG measurements. Results: LFPs recorded are influenced in amplitude, phase and duration by the electrode position in regards to the vicinity of tissue with different electrical properties. Conclusion: The framework reveals the influence of multiple mechanisms affecting LFPs including changes in the distance between the source -- electrode and tissue electrical properties. Clinical significance: Our modeled predictions may lead to new ways for interpreting volume conduction effects on recorded EMG activity, for example in neuromuscular diseases that cause structural and compositional changes in muscle tissue. These change will manifest itself by changing the electric properties of the conductor media and will impact recorded potentials in the area of affected tissue.


2021 ◽  
pp. 103-107
Author(s):  
Laura Becerra-Fajardo ◽  
Jesus Minguillon ◽  
Camila Rodrigues ◽  
Filipe O. Barroso ◽  
José L. Pons ◽  
...  

2021 ◽  
Author(s):  
Natalie Schaworonkow ◽  
Vadim V Nikulin

Analyzing non-invasive recordings of electroencephalography (EEG) and magnetoencephalography (MEG) directly in sensor space, using the signal from individual sensors, is a convenient and standard way of working with this type of data. However, volume conduction introduces considerable challenges for sensor space analysis. While the general idea of signal mixing due to volume conduction in EEG/MEG is recognized, the implications have not yet been clearly exemplified. Here, we illustrate how different types of activity overlap on the level of individual sensors. We show spatial mixing in the context of alpha rhythms, which are known to have generators in different areas of the brain. Using simulations with a realistic 3D head model and lead field and data analysis of a large resting-state EEG dataset, we show that electrode signals can be differentially affected by spatial mixing by computing a sensor complexity measure. While prominent occipital alpha rhythms result in less heterogeneous spatial mixing on posterior electrodes, central electrodes show a diversity of rhythms present. This makes the individual contributions, such as the sensorimotor mu-rhythm and temporal alpha rhythms, hard to disentangle from the dominant occipital alpha. Additionally, we show how strong occipital rhythms rhythms can contribute the majority of activity to frontal channels, potentially compromising analyses that are solely conducted in sensor space. We also outline specific consequences of signal mixing for frequently used assessment of power, power ratios and connectivity profiles in basic research and for neurofeedback application. With this work, we hope to illustrate the effects of volume conduction in a concrete way, such that the provided practical illustrations may be of use to EEG researchers to in order to evaluate whether sensor space is an appropriate choice for their topic of investigation.


2021 ◽  
Author(s):  
N. Williams ◽  
S. H. Wang ◽  
G. Arnulfo ◽  
L. Nobili ◽  
S. Palva ◽  
...  

Modules in brain connectomes are essential to balancing the functional segregation and integration crucial to brain operation. Connectomes are the set of structural or functional connections between each pair of brain regions. Non-invasive methodologies, Electroencephalography (EEG) and Magnetoencephalography (MEG), have been used to identify modules in connectomes of phase-synchronization, but have been compromised by spurious phase-synchronization due to EEG volume conduction or MEG field spread. In this study, we used invasive, intracerebral recordings with stereo-electroencephalography (SEEG, N = 67), to identify modules in connectomes of phase-synchronization. To do this, we used submillimetre localization of SEEG contacts and closest-white-matter referencing, to generate group-level connectomes of phase-synchronization minimally affected by volume conduction. Then, we employed community detection methods together with a novel consensus clustering approach, to identify modules in connectomes of phase-synchronization. The connectomes of phase-synchronization possessed significant modular organization at multiple spatial scales, from 3-320 Hz. These identified modules were highly similar within neurophysiologically meaningful frequency bands. Modules up to the high-gamma frequency band comprised only anatomically contiguous regions, unlike modules identified with functional Magnetic Resonance Imaging (fMRI). Strikingly, the identified modules comprised cortical regions involved in shared repertoires of cognitive functions including vision, language and attention. These results demonstrate the viability of combining SEEG with advanced methods, to identify modules in connectomes of phase-synchronization. The modules correspond to brain systems with specific functional roles in perceptual, cognitive, and motor processing.


2021 ◽  
Author(s):  
Christian O'Reilly ◽  
Mayada Elsabbagh

Functional connectivity computed from electroencephalograms (EEG) can be used to better understand how the brain works. Unfortunately, estimating such connectivity is fraught with many pitfalls and can be confounded with artifacts due to volume conduction, common sources, reference scheme, etc. Devising a method to compute surrogate EEG that would be free of functional connectivity but that would reliably reproduce the effect of confounders such as volume conduction would be invaluable for statistical inference on functional connectivity. We developed such a method by simulating EEG from estimated sources and by reproducing the properties of local (but not long-range) functional connectivity in intracranial recordings. We present an example of how this approach can be used to improve the estimation of functional connectivity in EEG.


2021 ◽  
Author(s):  
Christian O'Reilly ◽  
John D Lewis ◽  
Rebecca J Theilmann ◽  
Mayada Elsabbagh ◽  
Jeanne Townsend

Zero-lag synchrony is generally discarded from functional connectivity studies to eliminate the confounding effect of volume conduction. Demonstrating genuine and significant unlagged synchronization between distant brain regions would indicate that most electroencephalography (EEG) connectivity studies neglect an important mechanism for neuronal communication. We previously demonstrated that local field potentials recorded intracranially tend to synchronize with no lag between homotopic brain regions. This synchrony occurs most frequently in antiphase, potentially supporting corpus callosal inhibition and interhemispheric rivalry. We are now extending our investigation to EEG. By comparing the coherency in a recorded and a surrogate dataset, we confirm the presence of a significant proportion of genuine zero-lag synchrony unlikely to be due to volume conduction or to recording reference artifacts. These results stress the necessity for integrating zero-lag synchrony in our understanding of neural communication and for disentangling volume conduction and zero-lag synchrony when estimating EEG sources and their functional connectivity.


Sign in / Sign up

Export Citation Format

Share Document