scholarly journals Validation of satellite-based sea surface temperature products against in situ observations off the western coast of Sumatra

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Qoosaku Moteki

AbstractThis study validated the sea surface temperature (SST) datasets from the Group for High-Resolution SST Multi Product Ensemble (GMPE), National Oceanic and Atmospheric Administration (NOAA) Optimal Interpolation (OI) SST version 2 and 2.1 (OIv2 and OIv2.1), and Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) in the area off the western coast of Sumatra against in situ observations. Furthermore, the root mean square differences (RMSDs) of OIv2, OIv2.1, and ECCO2 were investigated with respect to GMPE, whose small RMSD < 0.2 K against in situ observations confirmed its suitability as a reference. Although OIv2 showed a large RMSD (1–1.5 K) with a significant negative bias, OIv2.1 (RMSD < 0.4 K) improved remarkably. In the average SST distributions for December 2017, the differences among the 4 datasets were significant in the areas off the western coast of Sumatra, along the southern coast of Java, and in the Indonesian inland sea. These results were consistent with the ensemble spread distribution obtained with GMPE. The large RMSDs of OIv2 corresponded to high clouds, and it was suggested that the change in the satellites used for SST estimation contributed to the improvement in OIv2.1.

2021 ◽  
Author(s):  
Qoosaku MOTEKI

Abstract This study validated the sea surface temperature (SST) datasets from the Group for High-Resolution SST Multi Product Ensemble (GMPE), National Oceanic and Atmospheric Administration (NOAA) Optimal Interpolation (OI) SST version 2 and 2.1 (OIv2 and OIv2.1), and Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2) in the area off the western coast of Sumatra against in situ observations. Furthermore, the root mean square differences (RMSDs) of OIv2, OIv2.1, and ECCO2 were investigated with respect to GMPE, whose small RMSD < 0.2 K against in situ observations confirmed its suitability as a reference. Although OIv2 showed a large RMSD (1-1.5 K) with a significant negative bias, OIv2.1 (RMSD < 0.4 K) improved remarkably. In the average SST distributions for December 2017, the differences among the 4 datasets were significant in the areas off the western coast of Sumatra, along the southern coast of Java, and in the Indonesian inland sea. These results were consistent with the ensemble spread distribution obtained with GMPE. The large RMSDs of OIv2 corresponded to high clouds, and it was suggested that the change in the satellites used for SST estimation contributed to the improvement in OIv2.1.


2019 ◽  
Vol 11 (7) ◽  
pp. 750 ◽  
Author(s):  
Emmanuel Dinnat ◽  
David Le Vine ◽  
Jacqueline Boutin ◽  
Thomas Meissner ◽  
Gary Lagerloef

Since 2009, three low frequency microwave sensors have been launched into space with the capability of global monitoring of sea surface salinity (SSS). The European Space Agency’s (ESA’s) Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), onboard the Soil Moisture and Ocean Salinity mission (SMOS), and National Aeronautics and Space Administration’s (NASA’s) Aquarius and Soil Moisture Active Passive mission (SMAP) use L-band radiometry to measure SSS. There are notable differences in the instrumental approaches, as well as in the retrieval algorithms. We compare the salinity retrieved from these three spaceborne sensors to in situ observations from the Argo network of drifting floats, and we analyze some possible causes for the differences. We present comparisons of the long-term global spatial distribution, the temporal variability for a set of regions of interest and statistical distributions. We analyze some of the possible causes for the differences between the various satellite SSS products by reprocessing the retrievals from Aquarius brightness temperatures changing the model for the sea water dielectric constant and the ancillary product for the sea surface temperature. We quantify the impact of these changes on the differences in SSS between Aquarius and SMOS. We also identify the impact of the corrections for atmospheric effects recently modified in the Aquarius SSS retrievals. All three satellites exhibit SSS errors with a strong dependence on sea surface temperature, but this dependence varies significantly with the sensor. We show that these differences are first and foremost due to the dielectric constant model, then to atmospheric corrections and to a lesser extent to the ancillary product of the sea surface temperature.


2012 ◽  
Vol 9 (5) ◽  
pp. 3071-3095
Author(s):  
I. Bashmachnikov ◽  
D. Boutov ◽  
J. Dias

Abstract. Two meddies were identified in the Iberian Basin using shipboard ADCP (Meddy 1) and ARGO float (Meddy 2) in contrasting background conditions. Meddy 1 was observed while interacting with the Azores current (AzC) while Meddy 2 was observed rather far north from the AzC jet, in much calmer dynamical background. In both cases the meddies produced a clear anticyclonic surface signal, detectable in altimetry as well as in sea-surface temperature (SST). Analysis of the in-situ observations of the dynamic signal over Meddy 1 showed that the signal, generated by the moving meddy, dominated the AzC dynamics at least up to the base of the seasonal thermocline even at the late stages of its interaction with the jet. The center of rotation of the surface signal was shifted south-westward from the axis of the meddy by about 18 km, and its dynamic radius was 2 times bigger than that of the meddy. The SST anomalies in the core of the surface signals were negative in contrast to the positive SST anomalies in surface anticyclones generated by meandering surface currents. The later difference gives ground for identification of meddies (as well as other sub-surface anticyclones) using coupled altimetry – SST remote sensing data. An identification of Meddy 1 previous to the shipboard ADCP measurements was the first successful experience. At the same time, SST anomalies over both meddies were rather weak, often unstable and statistically significant only over periods of months.


2021 ◽  
pp. 1-57
Author(s):  
Boyin Huang ◽  
Chunying Liu ◽  
Eric Freeman ◽  
Garrett Graham ◽  
Tom Smith ◽  
...  

AbstractNOAA Daily Optimum Interpolation Sea Surface Temperature (DOISST) has recently been updated to v2.1 (January 2016–present). Its accuracy may impact the climate assessment, monitoring and prediction, and environment-related applications. Its performance, together with those of seven other well-known sea surface temperature (SST) products, is assessed by comparison with buoy and Argo observations in the global oceans on daily 0.25°×0.25° resolution from January 2016 to June 2020. These seven SST products are NASA MUR25, GHRSST GMPE, BoM GAMSSA, UKMO OSTIA, NOAA GPB, ESA CCI, and CMC.Our assessments indicate that biases and root-mean-square-difference (RMSDs) in reference to all buoys and all Argo floats are low in DOISST. The bias in reference to the independent 10% of buoy SSTs remains low in DOISST, but the RMSD is slightly higher in DOISST than in OSTIA and CMC. The biases in reference to the independent 10% of Argo observations are low in CMC, DOISST, and GMPE; and RMSDs are low in GMPE and CMC. The biases are similar in GAMSSA, OSTIA, GPB, and CCI whether they are compared against all buoys, all Argo, or the 10% of buoy or 10% of Argo observations, while the RMSDs against Argo observations are slightly smaller than those against buoy observations. These features indicate a good performance of DOISST v2.1 among the eight products, which may benefit from ingesting the Argo observations by expanding global and regional spatial coverage of in situ observations for effective bias correction of satellite data.


Ocean Science ◽  
2012 ◽  
Vol 8 (5) ◽  
pp. 845-857 ◽  
Author(s):  
S. Guinehut ◽  
A.-L. Dhomps ◽  
G. Larnicol ◽  
P.-Y. Le Traon

Abstract. This paper describes an observation-based approach that efficiently combines the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 yr) are merged with the lower accuracy but high-resolution synthetic data derived from satellite altimeter and sea surface temperature observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations, and salinity fields from altimeter observations, through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolutionary nature of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method, and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50% of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30% of the signal can be reconstructed from altimeter observations, making the in situ observing system essential for salinity estimates. The in situ observations (step 2 of the method) further reduce the differences between the gridded products and the observations by up to 20% for the temperature field in the mixed layer, and the main contribution is for salinity and the near surface layer with an improvement up to 30%. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high resolution temperature and salinity fields. This also holds for the large-scale and low-frequency fields thanks to a better reduction of the aliasing due to the mesoscale variability. Contribution of the merged fields is then illustrated to describe qualitatively the temperature variability patterns for the period from 1993 to 2009.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Seung-Tae Lee ◽  
Yang-Ki Cho ◽  
Duk-jin Kim

AbstractSea surface temperature (SST) is crucial for understanding the physical characteristics and ecosystems of coastal seas. SST varies near the tidal flat, where exposure and flood recur according to the tidal cycle. However, the variability of SST near the tidal flat is poorly understood owing to difficulties in making in-situ observations. The high resolution of Landsat 8 enabled us to determine the variability of SST near the macro tidal flat. The spatial distribution of the SST extracted from Landsat 8 changed drastically. The seasonal SST range was higher near the tidal flat than in the open sea. The maximum seasonal range of coastal SST exceeded 23 °C, whereas the range in the open ocean was approximately 18 °C. The minimum and maximum horizontal SST gradients near the tidal flat were approximately − 0.76 °C/10 km in December and 1.31 °C/10 km in June, respectively. The heating of sea water by tidal flats in spring and summer, and cooling in the fall and winter might result in a large horizontal SST gradient. The estimated heat flux from the tidal flat to the seawater based on the SST distribution shows seasonal change ranging from − 4.85 to 6.72 W/m2.


2012 ◽  
Vol 29 (6) ◽  
pp. 867-879 ◽  
Author(s):  
Bruno Buongiorno Nardelli

Abstract A novel technique for the high-resolution interpolation of in situ sea surface salinity (SSS) observations is developed and tested. The method is based on an optimal interpolation (OI) algorithm that includes satellite sea surface temperature (SST) in the covariance estimation. The covariance function parameters (i.e., spatial, temporal, and thermal decorrelation scales) and the noise-to-signal ratio are determined empirically, by minimizing the root-mean-square error and mean error with respect to fully independent validation datasets. Both in situ observations and simulated data extracted from a numerical model output are used to run these tests. Different filters are applied to sea surface temperature data in order to remove the large-scale variability associated with air–sea interaction, because a high correlation between SST and SSS is expected only at small scales. In the tests performed on in situ observations, the lowest errors are obtained by selecting covariance decorrelation scales of 400 km, 6 days, and 2.75°C, respectively, a noise-to-signal ratio of 0.01 and filtering the scales longer than 1000 km in the SST time series. This results in a root-mean-square error of ~0.11 g kg−1 and a mean error of ~0.01 g kg−1, that is, reducing the errors by ~25% and ~60%, respectively, with respect to the first guess.


2012 ◽  
Vol 9 (2) ◽  
pp. 1313-1347 ◽  
Author(s):  
S. Guinehut ◽  
A.-L. Dhomps ◽  
G. Larnicol ◽  
P.-Y. Le Traon

Abstract. This paper describes an observation-based approach that combines efficiently the main components of the global ocean observing system using statistical methods. Accurate but sparse in situ temperature and salinity profiles (mainly from Argo for the last 10 years) are merged with the lower accuracy but high-resolution synthetic data derived from altimeter and sea surface temperature satellite observations to provide global 3-D temperature and salinity fields at high temporal and spatial resolution. The first step of the method consists in deriving synthetic temperature fields from altimeter and sea surface temperature observations and salinity fields from altimeter observations through multiple/simple linear regression methods. The second step of the method consists in combining the synthetic fields with in situ temperature and salinity profiles using an optimal interpolation method. Results show the revolution of the Argo observing system. Argo observations now allow a global description of the statistical relationships that exist between surface and subsurface fields needed for step 1 of the method and can constrain the large-scale temperature and mainly salinity fields during step 2 of the method. Compared to the use of climatological estimates, results indicate that up to 50 % of the variance of the temperature fields can be reconstructed from altimeter and sea surface temperature observations and a statistical method. For salinity, only about 20 to 30 % of the signal can be reconstructed from altimeter observations, making the in situ observing system mandatory for salinity estimates. The in situ observations (step 2 of the method) reduce additionally the error by up to 20 % for the temperature field in the mixed layer and the main contribution is for salinity and the near surface layer with an improvement up to 30 %. Compared to estimates derived using in situ observations only, the merged fields provide a better reconstruction of the high resolution temperature and salinity fields. This also holds for the large-scale and low-frequency fields thanks to a better reduction of the aliasing due to the mesoscale variability. Contribution of the merged fields is then illustrated to qualitatively describe the temperature variability patterns for the 1993 to 2009 time period.


2021 ◽  
Vol 13 (7) ◽  
pp. 1244
Author(s):  
Matthew Carr ◽  
Tarron Lamont ◽  
Marjolaine Krug

Several satellite-derived Sea Surface Temperature (SST) products were compared to determine their potential for research and monitoring applications around the southern African marine region. This study provides the first detailed comparison for the region, demonstrating good overall agreement (variance < 0.4 °C2) between merged SST products for most of the South African marine region. However, strong disagreement in absolute SST values (variance of 0.4–1.2 °C2 and differences of up to 6 °C) was observed at well-known oceanographic features characterized by complex temperature structures and strong SST gradients. Strong seasonal bias in the discrepancy between SST was observed and shown to follow seasonal increases in cloud cover or local oceanographic dynamics. Disagreement across the L4 products showed little dependence on their spatial resolutions. The periods of disagreement were characterized by large deviations among all products, which resulted mainly from the lack of input observations and reliance on interpolation schemes. This study demonstrates that additional methods such as the ingestion of additional in situ observations or daytime satellite acquisitions, especially along the west coast of southern Africa, might be required in regions of strong SST gradient, to improve their representations in merged SST products. The use of ensemble means may be more appropriate when conducting research and monitoring in these regions of high SST variance.


Sign in / Sign up

Export Citation Format

Share Document