scholarly journals Standard reference values of the upper body posture in healthy middle-aged female adults in Germany

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Ohlendorf ◽  
Polyna Sosnov ◽  
Julia Keller ◽  
Eileen M. Wanke ◽  
Gerhard Oremek ◽  
...  

AbstractIn order to classify and analyze the parameters of upper body posture, a baseline in form of standard values is demanded. To this date, standard values have only been published for healthy young women. Data for female adults between 51 and 60 years are lacking. 101 symptom-free female volunteers aged 51–60 (55.16 ± 2.89) years. The mean height of the volunteers was 1.66 ± 0.62 m, with a mean body weight of 69.3 ± 11.88 kg and an average BMI of 25.02 ± 4.55 kg/m2. By means of video raster stereography, a 3D-scan of the upper back surface was measured in a habitual standing position. The confidence interval, tolerance range and ICCs were calculated for all parameters. The habitual standing position is almost symmetrical in the frontal plane the most prominent deviation being a slightly more ventral position of the left shoulder blade in comparison to the right. The upper body (spine position) is inclined ventrally with a minor tilt to the left. In the sagittal plane, the kyphosis angle of the thoracic spine is greater than the lordosis angle of the lumbar spine. The pelvis is virtually evenly balanced with deviations from an ideal position falling under the measurement error margin of 1 mm/1°. There were also BMI influenced postural variations in the sagittal plane and shoulder distance. The ICCs are calculated from three repeated measurements and all parameters can be classified as "almost perfect". Deflections from an ideally symmetric spinal alignment in women aged 51–60 years are small-scaled, with a minimal frontal-left inclination and accentuated sigmoidal shape of the spine. Postural parameters presented in this survey allow for comparisons with other studies as well as the evaluation of clinical diagnostics and applications.

2021 ◽  
Vol 40 (1) ◽  
Author(s):  
Daniela Ohlendorf ◽  
Ugur Kaya ◽  
Julian Goecke ◽  
Gerhard Oremek ◽  
Hanns Ackermann ◽  
...  

Abstract Background In order to classify and analyze the parameters of upper body posture, a baseline in the form of standard values is demanded. To this date, standard values have only been published for healthy men aged 18–35 and 41–50 years. Data for male adults aged between 31 and 40 years are lacking. Methods The postural parameters of 101 symptom-free male volunteers aged 31–40 (35.58 ± 2.88) years were studied. The mean height of the men was 179.89 ± 7.38 cm, with a mean body weight of 86.36 ± 11.58 kg and an average BMI of 26.70 ± 3.35 kg/m2. By means of video rasterstereography, a 3-dimensional scan of the upper back surface was measured in a habitual standing position. The means or medians, confidence interval, tolerance range, and group comparisons and correlations of BMI and physical activity were calculated for all parameters. Results The habitual standing position was found to be almost symmetrical and the axis aligned in the spine, pelvis, and shoulder region, while the spine position was marginally inclined ventrally. The kyphosis angle of the thoracic spine was greater than the lordosis angle of the lumbar spine. All deviations fell under the measurement error margin of 1 mm/1°. The greater the BMI, the greater was the pelvic and scapular distance. The lower the BMI, the further caudally positioned was the right shoulder. The pelvic and scapular distances were also lower with the increasing athleticism of the participants. Conclusion The upper body posture of men between the ages of 31 and 40 years was found to be almost symmetrical and axis-conforming, with the kyphosis angle, pelvic distance, and shoulder distance enlarging with increasing BMI. Consequently, postural parameters presented in this survey allow for comparisons with other studies, as well as the evaluation of clinical diagnostics and applications.


BMJ Open ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. e022236 ◽  
Author(s):  
Daniela Ohlendorf ◽  
Vanessa Fisch ◽  
Charlotte Doerry ◽  
Sebastian Schamberger ◽  
Gerhard Oremek ◽  
...  

ObjectiveClassifications of posture deviations are only possible compared with standard values. However, standard values have been published for healthy male adults but not for female adults.DesignObservational study.SettingInstitute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe-University Frankfurt/Main.Participants106healthy female volunteers (21–30 years old; 25.1±2.7 years) were included. Their body weight ranged from 46 to 106 kg (60.3±7.9 kg), the heights from 1.53 to 1.82 m (1.69±0.06 m) and the body mass index from 16.9 kg/m² to 37.6 kg/m² (21.1±2.6 kg/m²).Outcome measuresA three-dimensional back scan was performed to measure the upper back posture in habitual standing. The tolerance ranges and CI were calculated. Group differences were tested by the Wilcoxon Mann-Whitney U test.ResultsIn normal posture, the spinal column was marginally twisted to the left, and the vertebrae were marginally rotated to the right. The kyphosis angle is larger than the lumbar angle. Consequently, a more kyphotic posture is observed in the sagittal plane. The habitual posture is slightly scoliotic with a rotational component (scapular depression right, right scapula marginally more dorsally, high state of pelvic right, iliac right further rotated anteriorly).ConclusionsHealthy young women have an almost ideally balanced posture with minimal ventral body inclination and a marginal scoliotic deviation. Compared with young males, women show only marginal differences in the upper body posture. These values allow a comparison to other studies, both for control and patient data, and may serve as guideline in both clinical practice and scientific studies.


2018 ◽  
Vol 27 (11) ◽  
pp. 1521-1528 ◽  
Author(s):  
Daniela Ohlendorf ◽  
Frederic Adjami ◽  
Benjamin Scharnweber ◽  
Johannes Schulze ◽  
Hanns Ackermann ◽  
...  

2020 ◽  
Vol 21 (1) ◽  
Author(s):  
C. Maurer-Grubinger ◽  
I. Avaniadi ◽  
F. Adjami ◽  
W. Christian ◽  
C. Doerry ◽  
...  

Abstract Background Temporary occlusal changes and their influence on the upper body statics are still controversially discussed. Furthermore, concrete statements on whether age- or gender-specific differences in neurophysiological reactions exist are missing. Therefore, it is the aim of this study to evaluate the immediate effects of a symmetrical occlusion blocking on the upper body posture. These effects shall be investigated for both genders and for a larger age range. Methods In this study, 800 (407f/393 m) subjects volunteered aged from 21 to 60 years. Both genders were divided into four age groups according to decades. The three-dimensional upper body posture was measured by using the rasterstereography (ABW-Bodymapper). The habitual static posture was measured in two dental occlusion conditions (a) in rest position and (b) symmetrical blocking in the bicuspid region by cotton rolls. Results A significant reduction of the trunk length (0.72 mm; p <  0.001), an increase of the lumbar (0.30°; p <  0.001) and the thoracic bending angle (0.14°; p = 0.001), a reduction of the spinal forward decline (0.16°; p <  0.001) and a reduction of the scapular distance (0.36 mm; p = 0.001) was found. Gender-specific reactions can only be recorded in scapular distance, in that regard men reduce this distance while over all age groups women did not show a significant change. Discussion Slight gender- and age-independent reactions due to a symmetric occlusion blockade are shown: A gender independent reaction of the spinal related variables in the sagittal plane (thoracic and lumbar flexion angle, trunk length, spinal forward decline). In addition, a gender specific change of the shoulder blade distance could be observed, where men reduced the distance while female did not show a change. However, since these reactions are of a minimum amount, it can be concluded that neurophysiological compensation mechanisms work equally well regardless of age and sex, and the upper body posture of healthy people changes only very slightly due to a temporarily symmetrical altered bite position.


Author(s):  
Daniela Ohlendorf ◽  
Christoph Mickel ◽  
Natalie Filmann ◽  
Eileen M. Wanke ◽  
David A. Groneberg

Author(s):  
Jun Wu ◽  
Jian Liu ◽  
Xiuyuan Li ◽  
Lingbo Yan ◽  
Libo Cao ◽  
...  

The driver’s whole-body posture at the time of a collision is a key factor in determining the magnitude of injury to the driver. However, current researchs on driver posture models only consider the upper body posture of the driver, and the lower body area which is not perceived by sensors is not studied. This paper investigates the driver’s posture and establishes a 3D posture model of the driver’s whole body through the application of machine vision algorithms and regression model statistics. This study proposes an improved Kinect-OpenPose algorithm for identifying the 3D spatial coordinates of nine keypoints of the driver’s upper body. The posture prediction regression model of four keypoints of the lower body is established by conducting volunteer posture acquisition experiments on the developed simulated driving seat and analyzing the volunteer posture data through using the principal components of the upper body keypoints and the seat parameters. The experiments proved that the error of the regression model in this paper is minor than that of current studies, and the accuracy of the keypoint location and the keypoint connection length of the established driver whole body posture model is high, which provides implications for future studies.


1982 ◽  
Vol 52 (4) ◽  
pp. 879-886 ◽  
Author(s):  
F. Haas ◽  
M. Simnowitz ◽  
K. Axen ◽  
D. Gaudino ◽  
A. Haas

The upper body posture naturally adopted by long distance runners was quantified, and its effects on ventilation were assessed in 14 subjects. Maximum voluntary ventilation (MVV) and flow-volume loop maneuvers were performed in three seated positions: 1) natural running posture (RUN), with back angled forward 11 degrees, neck flexed, and head extended 35 degrees forward of the spinal column; 2) back vertical with head and neck as above (NEF); and 3) head and back vertical (VERT). MVV was significantly higher in RUN compared with both NEF and VERT, as were peak inspiratory pressure (PImax) from functional residual capacity, peak expiratory flow (PEF), and peak inspiratory flow (PIF). Expiratory flow at 50% of vital capacity was significantly higher in RUN and NEF than in VERT, consistent with reported increases in flow due to tracheal stiffening. The increased PIF and PImax in RUN indicate increased inspiratory muscle tension and/or improved transduction of tension into a more negative pleural pressure. Magnetometer tracings of rib cage dimensions demonstrated greater anteroposterior stability during maximal inspiratory efforts in RUN compared with VERT. The improved inspiratory function seen in RUN may be due to more effective diaphragmatic and/or accessory muscle function. These findings demonstrate that the position naturally adopted by long distance runners favors ventilation.


2017 ◽  
Vol 16 (2) ◽  
pp. 131-138 ◽  
Author(s):  
Deepika Singla ◽  
Zubia Veqar ◽  
Mohammed Ejaz Hussain

Sign in / Sign up

Export Citation Format

Share Document