scholarly journals Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tassiana Maylla Fontoura Caron ◽  
Victor Juan Ulises Rodriguez Chuma ◽  
Alexander Arévalo Sandi ◽  
Darren Norris

AbstractDegraded Amazonian forests can take decades to recover and the ecological results of natural regeneration are still uncertain. Here we use field data collected across 15 lowland Amazon smallholder properties to examine the relationships between forest structure, mammal diversity, regrowth type, regrowth age, topography and hydrology. Forest structure was quantified together with mammal diversity in 30 paired regrowth-control plots. Forest regrowth stage was classified into three groups: late second-regrowth, early second-regrowth and abandoned pasture. Basal area in regrowth plots remained less than half that recorded in control plots even after 20–25 years. Although basal area did increase in sequence from pasture, early to late-regrowth plots, there was a significant decline in basal area of late-regrowth control plots associated with a decline in the proportion of large trees. Variation in different forest structure responses was explained by contrasting variables, with the proportion of small trees (DBH < 20 cm) most strongly explained by topography (altitude and slope) whereas the proportion of large trees (DBH > 60 cm) was explained by plot type (control vs. regrowth) and regrowth class. These findings support calls for increased efforts to actively conserve large trees to avoid retrogressive succession around edges of degraded Amazon forests.

2020 ◽  
Author(s):  
Tassiana Maylla Fontoura Caron ◽  
Victor Juan Ulises Rodriguez Chuma ◽  
Alexander Arévalo Sandi ◽  
Darren Norris

AbstractDegraded Amazonian forests can take decades to recover and the ecological results of natural regeneration are still uncertain. Here we use field data collected across 15 lowland Amazon smallholder properties to examine the relationships between forest structure, mammal diversity, regrowth type, regrowth age, topography and hydrography. Forest structure was quantified together with mammal diversity in 30 paired regrowth-control plots. Forest regrowth stage was classified into three groups: late second-regrowth, early second-regrowth and abandoned pasture. Basal area in regrowth plots remained less than half that recorded in control plots even after 20-25 years. Although basal area did increase in sequence from pasture, early to late-regrowth plots, there was a significant decline in basal area of late-regrowth control plots associated with a decline in the proportion of large trees. There was also contrasting support for different non-mutually exclusive hypotheses, with proportion of small trees (DBH <20cm) most strongly supported by topography (altitude and slope) whereas the proportion of large trees (DBH >60cm) supported by plot type and regrowth class. These findings support calls for increased efforts to actively conserve large trees to avoid retrogressive succession around edges of degraded Amazon forests.


2020 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Abir Dey ◽  
Aklima Akther

The study aimed to quantify and discuss the current condition of the tree species composition and natural regeneration of southeast parts of Bangladesh (Cox’s Bazar North Forest Division). A total of 121 stems having dbh ≥10cm and 3481 stems of regenerating tree species (dbh <10cm) per hectare were recorded. A large trees comprised of 17 species belonging to 10 families and 14 genera and 30 regenerating tree species belonging to 19 families and 27 genera have been found. The forests were highly non-uniform, with three or four species represented most of the stands. The values of diversity indices indicated limited plant diversity, which is dominated by two or three tree species. Stems of 10-30 cm dbh contributed almost 90% of the total stem density, whereas more than 80% of the total basal area still belonged to trees with dbh 100 cm or above. Dipterocarpus turbinatus was the most dominant species which have the highest Importance Value Index (IVI) with 135.82 and embodied 37.71% of the total stand density and 72.19% of total basal area. The study will provide scientific basis for the future implementation of forest conservation strategies in tropical forests of Southeast Asia, particularly in Bangladesh. This study may also pave the way to further research on regeneration potentials of the native species for conservation and enhancement of forests in future.


2018 ◽  
Vol 15 (11) ◽  
pp. 3377-3390 ◽  
Author(s):  
Victoria Meyer ◽  
Sassan Saatchi ◽  
David B. Clark ◽  
Michael Keller ◽  
Grégoire Vincent ◽  
...  

Abstract. Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new lidar-derived index, the large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations in forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne light detection and ranging (lidar) and ground inventory data in nine undisturbed old-growth Neotropical forests, of which four had plots large enough (1 ha) to calibrate our model. We found that the LCA for trees greater than 27 m (∼ 25–30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across sites (R2 = 0.78, RMSE = 46.02 Mg ha−1, bias = −0.63 Mg ha−1). Unlike other lidar-derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear and remains unique across forest types. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter greater than 50 cm. The spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality and other types of tropical forest disturbance and dynamics.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1022
Author(s):  
Daniel Luis Mascia Vieira ◽  
Silvia Barbosa Rodrigues ◽  
Catarina Conte Jakovac ◽  
Gustavo Paiva Evangelista da Rocha ◽  
Fagno Reis ◽  
...  

Amazonia is well known for its high natural regeneration capacity; for this reason, passive restoration is normally recommended for the recovery of its degraded forests. However, highly deforested landscapes in southern Amazonia require active restoration. Since restoration methods can shape the quality and speed of early forest recovery, this study aimed to verify how active restoration pushes sites stably covered with exotic grasses towards forest recovery. We evaluated early forest succession at active restoration sites, i.e., soil plowing, direct seeding of pioneer species, and seedling stock planting at low density. We analyzed forest structure, diversity, and species composition in two age classes, 0.5–3.5 and 4.5–7.5 years old. As reference, we evaluated sites able to naturally regenerate in the same region. We sampled 36 active restoration and 31 natural regeneration sites along the Madeira River, southern Amazonia. Active restoration triggered succession to similar or higher levels of forest structure than sites where natural regeneration was taking place. The most dominant species did not overlap between active restoration and natural regeneration sites. The overall composition of species was different between the two restoration methods. Dominant species and size class distribution show that active restoration is performing successfully. Soil preparation combined with a high availability of seeds of pioneer trees resulted in a high stem density and basal area of facilitative pioneer trees. Planted seedlings added species diversity and increased density of large trees. Interventions to increase the odds of natural regeneration can be effective for non-regenerating sites in resilient landscapes.


2018 ◽  
Author(s):  
Victoria Meyer ◽  
Sassan Saatchi ◽  
David B. Clark ◽  
Michael Keller ◽  
Grégoire Vincent ◽  
...  

Abstract. Large tropical trees store significant amounts of carbon in woody components and their distribution plays an important role in forest carbon stocks and dynamics. Here, we explore the properties of a new Lidar derived index, large tree canopy area (LCA) defined as the area occupied by canopy above a reference height. We hypothesize that this simple measure of forest structure representing the crown area of large canopy trees could consistently explain the landscape variations of forest volume and aboveground biomass (AGB) across a range of climate and edaphic conditions. To test this hypothesis, we assembled a unique dataset of high-resolution airborne Light Detection and Ranging (Lidar) and ground inventory data in nine undisturbed old growth Neotropical forests. We found that the LCA for trees greater than 27 m (~ 25–30 m) in height and at least 100 m2 crown size in a unit area (1 ha), explains more than 75 % of total forest volume variations, irrespective of the forest biogeographic conditions. When weighted by average wood density of the stand, LCA can be used as an unbiased estimator of AGB across all sites (R2 = 0.78, RMSE = 46.02 Mg ha−1, bias = 0.76 Mg ha−1). Unlike other Lidar derived metrics with complex nonlinear relations to biomass, the relationship between LCA and AGB is linear. A comparison with tree inventories across the study sites indicates that LCA correlates best with the crown area (or basal area) of trees with diameter > 50 cm. The spatial invariance of the LCA–AGB relationship across the Neotropics suggests a remarkable regularity of forest structure across the landscape and a new technique for systematic monitoring of large trees for their contribution to AGB and changes associated with selective logging, tree mortality, and other types of forest disturbance and dynamics.


2021 ◽  
Author(s):  
Daniel Luis Mascia Vieira ◽  
Silvia Rodrigues ◽  
Catarina Conte Jakovac ◽  
Gustavo Paiva Evangelista da Rocha ◽  
Fagno Reis ◽  
...  

Abstract Background: Amazonia is well known for its high natural regeneration capacity; for this reason, passive restoration is normally recommended for the recovery of its degraded forests. However, highly deforested landscapes in southern Amazonia require active restoration. Since restoration methods can shape the quality and speed of early forest recovery, this study aimed to verify how active restoration pushes non-resilient sites towards forest recovery. Methods: We evaluated early forest succession at active restoration sites, i.e. soil plowing, direct seeding of pioneer species and seedling stock planting at low density. We analyzed forest structure, diversity and species composition in two age classes, 0.5 – 3.5 and 4.5 – 7.5 years old. As reference, we evaluated natural regeneration as performed on more resilient sites in the same region. We sampled 36 active restoration and 31 natural regeneration sites along the Madeira river, southern Amazonia. Results: Active restoration triggered succession to similar or higher levels of forest structure than sites where natural regeneration was taking place. The most dominant species did not overlap between active restoration and natural regeneration sites. The overall composition of species was different between the two restoration methods. Dominant species and size class distribution indicate that active restoration is performing successfully. Conclusions: Soil preparation combined with a high availability of seeds of pioneer trees resulted in a high stem density and basal area of facilitative pioneer trees. Planted seedlings added species diversity and increased density of large trees. Interventions to increase the odds of natural regeneration can be effective for non-resilient sites located in resilient landscapes.


2015 ◽  
Vol 45 (4) ◽  
pp. 393-404 ◽  
Author(s):  
Lassi SUOMINEN ◽  
Kalle RUOKOLAINEN ◽  
Timo PITKÄNEN ◽  
Hanna TUOMISTO

Forest structure determines light availability for understorey plants. The structure of lowland Amazonian forests is known to vary over long edaphic gradients, but whether more subtle edaphic variation also affects forest structure has not beenresolved. In western Amazonia, the majority of non-flooded forests grow on soils derived either from relatively fertile sediments of the Pebas Formation or from poorer sediments of the Nauta Formation. The objective of this study was to compare structure and light availability in the understorey of forests growing on these two geological formations. We measured canopy openness and tree stem densities in three size classes in northeastern Peru in a total of 275 study points in old-growth terra firme forests representing the two geological formations. We also documented variation in floristic composition (ferns, lycophytes and the palm Iriartea deltoidea) and used Landsat TM satellite image information to model the forest structural and floristic features over a larger area. The floristic compositions of forests on the two formations were clearly different, and this could also be modelled with the satellite imagery. In contrast, the field observations of forest structure gave only a weak indication that forests on the Nauta Formation might be denser than those on the Pebas Formation. The modelling of forest structural features with satellite imagery did not support this result. Our results indicate that the structure of forest understorey varies much less than floristic composition does over the studied edaphic difference.


2016 ◽  
Vol 8 (1) ◽  
pp. 125-133 ◽  
Author(s):  
Sudam Charan SAHU ◽  
H.S. SURESH ◽  
N.H. RAVINDRANATH

The study of biomass, structure and composition of tropical forests implies also the investigation of forest productivity, protection of biodiversity and removal of CO2 from the atmosphere via C-stocks. The hereby study aimed at understanding the forest structure, composition and above ground biomass (AGB) of tropical dry deciduous forests of Eastern Ghats, India, where as a total of 128 sample plots (20 x 20 meters) were laid. The study showed the presence of 71 tree species belonging to 57 genera and 30 families. Dominant tree species was Shorea robusta with an importance value index (IVI) of 40.72, while Combretaceae had the highest family importance value (FIV) of 39.01. Mean stand density was 479 trees ha-1 and a basal area of 15.20 m2 ha-1. Shannon’s diversity index was 2.01 ± 0.22 and Simpson’s index was 0.85 ± 0.03. About 54% individuals were in the size between 10 and 20 cm DBH, indicating growing forests. Mean above ground biomass value was 98.87 ± 68.8 Mg ha-1. Some of the dominant species that contributed to above ground biomass were Shorea robusta (17.2%), Madhuca indica (7.9%), Mangifera indica (6.9%), Terminalia alata (6.9%) and Diospyros melanoxylon (4.4%), warranting extra efforts for their conservation. The results suggested that C-stocks of tropical dry forests can be enhanced by in-situ conserving the high C-density species and also by selecting these species for afforestation and stand improvement programs. Correlations were computed to understand the relationship between above ground biomass, diversity indices, density and basal area, which may be helpful for implementation of REDD+ (reduce emissions from deforestation and forest degradation, and foster conservation, sustainable management of forests and enhancement of forest carbon stocks) scheme.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sandra Cristina Müller ◽  
Rodrigo Scarton Bergamin ◽  
Kauane Maiara Bordin ◽  
Joice Klipel ◽  
Milena Fermina Rosenfield

Secondary forests originate from natural regeneration after fallow (succession) or restoration. Species assembly in these communities, which can affect ecosystem functions and successional trajectories, is very unpredictable. Trait-based trajectories can shed light on the recovery of ecosystem functions and enable predictions of how the regenerating communities will change with forest age. Regeneration communities are affected by initial conditions and also by canopy structure and functional traits that alter dispersers' attractiveness and coexistence mechanisms. Here we evaluated how community functional traits change over time and tested if functional diversity and composition of the established canopy, as well as the structure of the canopy and forest age, influence the functional structure of regenerating tree communities when compared to their reference forests. For this, we calculated dissimilarity in trait composition (community-weighted means) and in functional diversity of regenerating communities of each succession/restoration stand, using the tree stratum of nearby mature forests as baseline values. Functional trait information comprises leaf, wood density, and reproductive traits from tree species. Our community data contain information from natural successional forests and restoration sites, in the South-Brazilian Atlantic Forest. Predictor variables of functional dissimilarities were forest age, canopy structural variables, canopy functional composition, and functional diversity. Results showed leaf traits (leaf dry matter content, leaf nitrogen content, leaf nitrogen-phosphorus ratio) and seed mass varying with forest age. Canopy functional composition based on leaf traits and total basal area significantly predicted multiple trait functional dissimilarity between the regeneration component of secondary forests and their reference community values. Dissimilarity increased when the canopy was composed of species with more acquisitive traits. Difference in functional diversity was only influenced by forest age. Mid-stage secondary forests showed lower functional diversity than early-stage forests. Our results indicated the importance of canopy traits on the natural regeneration of secondary subtropical forests. If functional similarity with reference forests is a desired objective in order to recover ecosystem functions through natural regeneration, leaf functional traits of canopy trees that establish or are planted in degraded areas must be considered in the successional processes.


2007 ◽  
Vol 85 (3) ◽  
pp. 285-298 ◽  
Author(s):  
Ryan D. Haugo ◽  
Charles B. Halpern

Conifer invasion of mountain meadows is pervasive in western North America, but its consequences for plant composition and diversity have not been studied. We used a chronosequence approach to reconstruct temporal patterns of vegetation change in response to ~200 years of conifer encroachment of a dry, montane meadow in the western Cascade Range, Oregon. Tree age distributions, forest structure, light, and vegetation composition were determined for three hundred and fifty-six 10 m × 10 m samples representing a gradient from open meadow to old forest (>90 years). Nonmetric multidimensional scaling revealed strong turnover in species composition from open meadow to old forest. Ordination axes were highly correlated with light availability and density/basal area of encroaching grand fir, Abies grandis (Dougl. ex D. Don) Lindl., and lodgepole pine, Pinus contorta Dougl. ex Loud. Cover of meadow species declined steeply with establishment of A. grandis ; richness declined more gradually and extirpations of meadow species were rare. Forest herbs colonized within two decades of tree establishment and within 60–80 years dominated the understory flora. In contrast with meadow species, changes in richness and cover of forest herbs were weakly related to changes in forest structure. Rapid replacement of meadow by forest species and long-term effects of trees on soils may limit potential for restoration of these unique habitats.


Sign in / Sign up

Export Citation Format

Share Document