scholarly journals Similar understorey structure in spite of edaphic and floristic dissimilarity in Amazonian forests

2015 ◽  
Vol 45 (4) ◽  
pp. 393-404 ◽  
Author(s):  
Lassi SUOMINEN ◽  
Kalle RUOKOLAINEN ◽  
Timo PITKÄNEN ◽  
Hanna TUOMISTO

Forest structure determines light availability for understorey plants. The structure of lowland Amazonian forests is known to vary over long edaphic gradients, but whether more subtle edaphic variation also affects forest structure has not beenresolved. In western Amazonia, the majority of non-flooded forests grow on soils derived either from relatively fertile sediments of the Pebas Formation or from poorer sediments of the Nauta Formation. The objective of this study was to compare structure and light availability in the understorey of forests growing on these two geological formations. We measured canopy openness and tree stem densities in three size classes in northeastern Peru in a total of 275 study points in old-growth terra firme forests representing the two geological formations. We also documented variation in floristic composition (ferns, lycophytes and the palm Iriartea deltoidea) and used Landsat TM satellite image information to model the forest structural and floristic features over a larger area. The floristic compositions of forests on the two formations were clearly different, and this could also be modelled with the satellite imagery. In contrast, the field observations of forest structure gave only a weak indication that forests on the Nauta Formation might be denser than those on the Pebas Formation. The modelling of forest structural features with satellite imagery did not support this result. Our results indicate that the structure of forest understorey varies much less than floristic composition does over the studied edaphic difference.

2017 ◽  
pp. 31
Author(s):  
Jorge Meave ◽  
Miguel Angel Soto ◽  
Luz María Calvo-Irabien ◽  
Horacio Paz-Hernández ◽  
Susana Valencia-Avalos

The floristic composition, structure, and texture of 1 ha of mesophytic mountain forest in Omiltemi, Guerrero, is described. With 138 species of vascular plants in the plot, this forest is very rich, with epiphytes, trees and herbs comprising the most diverse growth forms. The geographic affinities of this forest are diverse; many elements are shared with the andean-mesoamerican regions, and others are present in the deciduous forests of eastern United States. The Omiltemi forest is similar to other communities from western Mexico, and many of the endemic elements of this region occur in Omiltemi. This forest is structurally dense, approximately 24 m high, without a well-defined stratification. The canopy is made up mainly by Carpinus caroliniana and Quercus uxoris; Pinus ayacahuite is an emergent tree. The understory is rich in small-statured tree species. The horizontal distributions of the trees were analyzed, and only two understory species had a clumped pattern. Density is 2,096 trees/ha, total basal area is 49.82 m2/ha and cover is 263.8% The most important! species in the forest structure are those reaching the canopy. Two trends in the diametric structures of tree species populations were found: 1) with classes of small sizes having high frequencies, and gradually decreasing towards classes of larger sizes, and 2) with classes of intermediate sizes having lower frequencies than classes of smaller and larger sizes. The internal spatial variation of the forest structure was analyzed using multivariate methods. Tropical species were usually found in more humid places, while species of temperate affinities occurred in more exposed sites. Five floristic groups were recognized, and their associated structural features are described. This forest bears leaves throughout the year, although some of the most abundant species of the canopy are deciduous. The textural characteristics of pollination, dispersal and tree architecture are described. In addition, the mixed character of the mesophytic mountain forest of Omiltemi is discussed and related to its marginal geographic location.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tassiana Maylla Fontoura Caron ◽  
Victor Juan Ulises Rodriguez Chuma ◽  
Alexander Arévalo Sandi ◽  
Darren Norris

AbstractDegraded Amazonian forests can take decades to recover and the ecological results of natural regeneration are still uncertain. Here we use field data collected across 15 lowland Amazon smallholder properties to examine the relationships between forest structure, mammal diversity, regrowth type, regrowth age, topography and hydrology. Forest structure was quantified together with mammal diversity in 30 paired regrowth-control plots. Forest regrowth stage was classified into three groups: late second-regrowth, early second-regrowth and abandoned pasture. Basal area in regrowth plots remained less than half that recorded in control plots even after 20–25 years. Although basal area did increase in sequence from pasture, early to late-regrowth plots, there was a significant decline in basal area of late-regrowth control plots associated with a decline in the proportion of large trees. Variation in different forest structure responses was explained by contrasting variables, with the proportion of small trees (DBH < 20 cm) most strongly explained by topography (altitude and slope) whereas the proportion of large trees (DBH > 60 cm) was explained by plot type (control vs. regrowth) and regrowth class. These findings support calls for increased efforts to actively conserve large trees to avoid retrogressive succession around edges of degraded Amazon forests.


2021 ◽  
Vol 13 (8) ◽  
pp. 1513
Author(s):  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Christian Ammer ◽  
Martin Ehbrecht ◽  
Katharina Willim ◽  
...  

The structural complexity of the understory layer of forests or shrub layer vegetation in open shrublands affects many ecosystem functions and services provided by these ecosystems. We investigated how the basal area of the overstory layer, annual and seasonal precipitation, annual mean temperature, as well as light availability affect the structural complexity of the understory layer along a gradient from closed forests to open shrubland with only scattered trees. Using terrestrial laser scanning data and the understory complexity index (UCI), we measured the structural complexity of sites across a wide range of precipitation and temperature, also covering a gradient in light availability and basal area. We found significant relationships between the UCI and tree basal area as well as canopy openness. Structural equation models (SEMs) confirmed significant direct effects of seasonal precipitation on the UCI without mediation through basal area or canopy openness. However, annual precipitation and temperature effects on the UCI are mediated through canopy openness and basal area, respectively. Understory complexity is, despite clear dependencies on the available light and overall stand density, significantly and directly driven by climatic parameters, particularly the amount of precipitation during the driest month.


2017 ◽  
Vol 33 (2) ◽  
pp. 107-113 ◽  
Author(s):  
David P. Matlaga ◽  
Rachel K. Snyder ◽  
Carol C. Horvitz

Abstract:Many plants within the neotropical understorey produce both seeds and clonal offspring. Plant attributes (i.e. size) and variability in light can influence seed dispersal but it is not known if these factors influence the dispersal of clonal offspring. Our goal was to determine if canopy openness and plant size influence clonal-offspring dispersal of the herb Goeppertia marantifolia, which produces clonal bulbils on above-ground shoots. We monitored plants in permanent plots with varying levels of canopy openness in Corcovado National Park, Costa Rica. We recorded canopy openness, leaf area and the distance clonal offspring travelled from their parent plant (N = 283). Our path analysis model demonstrated that canopy openness had a strong positive effect on dispersal distance, while the association between clonal-offspring dispersal distance and parent plant leaf area was only weakly positive. On average, plants experiencing high canopy openness dispersed their clonal offspring further than plants under low canopy openness (124 cm vs. 79 cm, respectively). Contrary to studies on species that utilize rhizomes and stolons for clonal reproduction, we found that in this bulbil-producing species light availability is positively associated with clonal dispersal distance. Therefore, the influence of resource availability on spatial population dynamics of clonal species may be influenced by the species’ growth-form.


2021 ◽  
Author(s):  
Yupan Zhang ◽  
Yuichi Onda ◽  
Hiroaki Kato ◽  
Xinchao Sun ◽  
Takashi Gomi

&lt;p&gt;Understory vegetation is an important part of evapotranspiration from forest floor. Forest management changes the forest structure and then affects the understory vegetation biomass (UVB). Quantitative measurement and estimation of&amp;#160; UVB is a step cannot be ignored in the study of forest ecology and forest evapotranspiration. However, large-scale biomass measurement and estimation is challenging. In this study, Structure from Motion (SfM) was adopted simultaneously at two different layers in a plantation forest made by Japanese cedar and Japanese cypress to reconstruct forest structure from understory to above canopy: i) understory drone survey in a 1.1h sub-catchment to generate canopy height model (CHM) based on dense point clouds data derived from a manual low-flying drone under the canopy; ii) Above-canopy drone survey in whole catchment (33.2 ha) to compute canopy openness data based on point clouds of canopy derived from an autonomous flying drone above the canopy. Combined with actual biomass data from field harvesting to develop regression models between the CHM and UVB, which was then used to map spatial distribution of&amp;#160; UVB in sub-catchment. The relationship between UVB and canopy openness data was then developed by overlap analysis. This approach yielded high resolution understory over catchment scale with a point cloud density of more than 20 points/cm&lt;sup&gt;2&lt;/sup&gt;. Strong coefficients of determination (R-squared = 0.75) of the cubic model supported prediction of UVB from CHM, the average UVB was 0.82kg/m&lt;sup&gt;2&lt;/sup&gt; and dominated by low ferns. The corresponding forest canopy openness in this area was 42.48% on average. Overlap analysis show no significant interactions between them in a cubic model with weak predictive power (R-squared &lt; 0.46). Overall, we reconstructed the multi-layered structure of the forest and provided models of UVB. Understory survey has high accuracy for biomass measurement, but it&amp;#8217;s inherently difficult to estimate UVB only based on canopy openness result.&lt;/p&gt;


2021 ◽  
Author(s):  
Maximillian Van Wyk de Vries ◽  
Shashank Bhushan ◽  
David Shean ◽  
Etienne Berthier ◽  
César Deschamps-Berger ◽  
...  

&lt;p&gt;On the 7&lt;sup&gt;th&lt;/sup&gt; of February 2021, a large rock-ice avalanche triggered a debris flow in Chamoli district, Uttarakhand, India, resulting in over 200 dead or missing and widespread infrastructure damage. The rock-ice avalanche originated from a steep, glacierized north-facing slope with a history of instability, most recently a 2016 ice avalanche. In this work, we assess whether the slope exhibited any precursory displacement prior to collapse. We evaluate monthly slope motion over the 2015 and 2021 period through feature tracking of high-resolution optical satellite imagery from Sentinel-2 (10 m Ground Sampling Distance) and PlanetScope (3-4 m Ground Sampling Distance). Assessing slope displacement of the underlying rock is complicated by the presence of glaciers over a portion of the collapse area, which display surface displacements due to internal ice deformation. We overcome this through tracking the motion over ice-free portions of the slide area, and evaluating the spatial pattern of velocity changes in glaciated areas. Preliminary results show that the rock-ice avalanche bloc slipped over 10 m in the 5 years prior to collapse, with particularly rapid slip occurring in the summer of 2017 and 2018. These results provide insight into the precursory conditions of the deadly rock-ice avalanche, and highlight the potential of high-resolution optical satellite image feature tracking for monitoring the stability of high-risk slopes.&lt;/p&gt;


2010 ◽  
Vol 40 (11) ◽  
pp. 2164-2174 ◽  
Author(s):  
Sarah E. Stehn ◽  
Christopher R. Webster ◽  
Janice M. Glime ◽  
Michael A. Jenkins

We investigated the influence of fine-scale elevational gradients and overstory disturbance on bryophyte distribution, diversity, and community composition. Bryophyte species cover and richness were sampled across 60 randomly selected plots within high-elevation spruce–fir ( Picea – Abies ) forests of Great Smoky Mountains National Park. Ordination and regression analyses revealed a fine-scale elevation gradient (700 m) in bryophyte community composition. Observed changes in bryophyte diversity and community composition were also associated with variation in deciduous basal area and thus litter composition, the prevalence of herbaceous plants, and the degree of canopy openness resulting from balsam woolly adelgid ( Adelges piceae Ratz.) infestation. Although overstory disturbances, such as those caused by the adelgid, create suitable substrate for bryophyte colonization, the corresponding increase in light availability and deciduous basal area may alter bryophyte diversity and community assemblages.


2007 ◽  
Vol 60 ◽  
pp. 137-140 ◽  
Author(s):  
J.D. Shepherd ◽  
J.R. Dymond ◽  
J.R.I. Cuff

The spatial change of woody vegetation in the Canterbury region was automatically mapped between 1990 and 2001 using Landsat satellite image mosaics The intersection of valid data from these mosaics gave coverage of 84 of the Canterbury region Changes in woody cover greater than 5 ha were identified Of the 5 ha areas of woody change only those that were likely to have been a scrub change were selected using ancillary thematic data for current vegetation cover (eg afforestation and deforestation were excluded) This resulted in 2466 polygons of potential scrub change These polygons were rapidly checked by visual assessment of the satellite imagery and assigned to exotic or indigenous scrub change categories Between 1990 and 2001 the total scrub weed area in the Canterbury region increased by 3600 400 ha and indigenous scrub increased by 2300 400 ha


2020 ◽  
Vol 1 (4) ◽  
pp. 125-134
Author(s):  
Pawan Rachee

The images that have been taken from space satellites are described by satellite imagery. The presence of the earth's surface is detected by remote sensing. Normally the source of the satellite image is barely seen, because many points in the sky are obscured with cloud shadows. Therefore, one of the most important and ubiquitous tasks in image analysis is segmentation. Segmentation is the method of dividing a image into a collection of specific regions that vary in some essential qualitative or quantitative manner. In this paper we will focus on a method for segmenting images that was developed   Three different methods to detect the location of the satellite images have been studied, implemented, and tested; these are based on Chan-Vese and saliency map segmentation, and multi-resolution segmentation to obtain a proper object segmentation. In this study, the combination of the proposed segmentation automatic detection and image enhancement technique has been performed to reduce the noise of the original image. In addition, the Bilateral filter, and histogram equalization are used in these proposed techniques. Experimental results demonstrate that the suggested method can precisely extract the objective of Amedi site from the satellite images with difficult backgrounds and overlapping regions.


2019 ◽  
Vol 9 (2) ◽  
pp. 16-22
Author(s):  
Nadya Fiqi Nurcahyani

Mangrove forests have high ecological, economic and social values ??which function to maintain shoreline stability, protect beaches and riverbanks, filter and remediate waste, and to withstand floods and waves. The facts show that mangrove damage is everywhere, even the intensity of damage and its area tends to increase significantly. Many roles of mangroves require proper management to maintain the existence of mangroves. One way to determine the area of ??mangroves is by processing Landsat 8 satellite imagery. The stages of mangrove identification are carried out by using 564 RGB band merger, then separating the mangrove and non-mangrove objects. Next step is to analyze the density of mangroves using NDVI formula. To maximize monitoring of mangrove area, an android application was created that provides information on the area and density of mangroves at several locations, namely Clungup, Bangsong Teluk Asmara and Cengkrong from 2015 to 2018.The results showed that Landsat 8 satellite imagery can be used to identify changes in the area of ??mangrove forests with good accuracy, namely in the Clungup area of ??90% and Cengkrong of 86.67%. From processing results, the mangrove area in the Clungup area has also decreased from 2015 to 2017 but has increased in 2018 so that the application provides recommendations for embroidering mangroves in 2016 to 2017 and mangrove recommendations are maintained in 2018. As for Bangsong Teluk area Asmara and Cengkrong have increased the area of ??mangroves every year so that the application provides recommendations to be maintained from 2016 to 2018.


Sign in / Sign up

Export Citation Format

Share Document